dusk
dusk

Reputation: 9

How are shared libraries referenced by various programs?

I understand that shared libraries are loaded into memory and used by various programs.
How can a program know where in memory the library is?

Upvotes: 0

Views: 95

Answers (1)

ice05
ice05

Reputation: 529

When a shared library is used, there are two parts to the linkage process. At compile time, the linker program, ld in Linux, links against the shared library in order to learn which symbols are defined by it. However, none of the code or data initializers from the shared library are actually included in the ultimate a.out file. Instead, ld just records which dynamic libraries were linked against and the information is placed into an auxiliary section of the a.out file.

The second phase takes placed at execution time, before main gets invoked. The kernel loads a small helper program, ld.so, into the address space and this gets executed. Therefore, the start address of the program is not main or even _start (if you have heard of it). Rather, it is actually the start address of the dynamic library loader.

In Linux, the kernel maps the ld.so loader code into a convenient place in the precess address space and sets up the stack so that the list of required shared libraries (and other necessary info) is present. The dynamic loader finds each of the required libraries by looking at a sequence of directories which are often point in the LD_LIBRARY_PATH environment variable. There is also a pre-defined list which is hard-coded into ld.so (and additional search places can be hard-coded into the a.out during link time). For each of the libraries, the dynamic loader reads its header and then uses mmap to create memory regions for the library.

Now for the fun part.

Since the actual libraries used at run-time to satisfy the requirements are not known at link-time, we need to figure out a way to access functions defined in the shared library and global variables that are exported by the shared library (this practice is deprecated since exporting global variables is not thread-safe, but it is still something we try to handle).

Global variables are assigned a statics address at link time and are then accessed by absolute memory address.

For functions exported by the library, the user of the library is going to emit a series of call assembly instructions, which reference an absolute memory address. But, the exact absolute memory address of the referenced function is not known at link time. How do we deal with this?

Well, the linker creates what is known as a Procedure Linkage Table, which is a series of jmp (assembly jump) instructions. The target of the jump is filled in at run time.

Now, when dealing with the dynamic portions of the code (i.e. the .o files that have been compiled with -fpic), there are no absolute memory references whatsoever. In order to access global variables which are also visible to the static portion of the code, another table called the Global Offset Table is used. This table is an array of pointers. At link time, since the absolute memory addresses of the global variables are known, the linker populates this table. Then, at run time, dynamic code is able to access the global variables by first finding the Global Offset Table, then loading the address of the correct variable from the appropriate slot in the table, and finally dereferencing the pointer.

Upvotes: 1

Related Questions