Reputation: 2438
I need to have a table with columns of different datatypes (float or integer).
I use the dtype to define them :
import numpy as np
# define array
datadef=[ ('i', '<i4'), ('f', '<f8'), ('g', '<f8'), ('j', '<i4') ]
arr = np.full((4,), np.nan, dtype=datadef)
# fill array with data
arr['i'] = np.array([1, 2, 3, 4])
arr['f'] = np.array([1.3333333333, np.nan, 2.6666666666666666, 5.0])
arr['g'] = np.array([2.77777777777, 5.4, 3.4, np.nan])
# nothing for 'j'
print arr
Output :
[(1, 1.33333333, 2.77777778, -2147483648)
(2, nan, 5.4 , -2147483648)
(3, 2.66666667, 3.4 , -2147483648)
(4, 5. , nan, -2147483648)]
The NaN
values of the last column has been transformed into -2147483648
, no problem with that so far.
But now I am not able to check if the values are indeed NaN in my array :
row = arr[1]
print np.isnan(row) # TypeError: ufunc 'isnan' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''
And on a single cell it seems like the NaN
information is lost and the -2147483648
is considered as a "classic number" :
print row # (2, nan, 5.4, -2147483648)
print np.isnan(row[0]) # False, OK
print np.isnan(row[1]) # True, OK
print np.isnan(row[3]) # False, expected True
Is there an easy way to check for NaN
on integers in this situation ?
Upvotes: 0
Views: 1562
Reputation: 12397
np.nan
is float and not an integer. You either have to change your dtype for last column or use a different structure to store your nan as integer.
datadef=[ ('i', '<i4'), ('f', '<f8'), ('g', '<f8'), ('j', '<f4') ]
arr = np.full((4,), np.nan, dtype=datadef)
# fill array with data
arr['i'] = np.array([1, 2, 3, 4])
arr['f'] = np.array([1.3333333333, np.nan, 2.6666666666666666, 5.0])
arr['g'] = np.array([2.77777777777, 5.4, 3.4, np.nan])
# nothing for 'j'
Now try printing np.isnan statement:
print(np.isnan(arr[1][3]))
True
Upvotes: 1