Reputation: 377
I have a dataset:
a day day.1.time day.2.time day.3.time day.4.time day.5.time
1 NA 2 4 5 7 10 4
2 NA 5 4 1 1 6 NA
3 NA 3 7 9 6 7 4
4 NA 3 6 8 8 4 5
5 NA 3 5 2 4 5 6
6 NA 3 87 3 2 1 78
7 NA 1 NA 7 5 9 54
8 NA 5 6 6 3 2 3
9 NA 2 5 10 9 8 3
10 NA 3 9 4 10 3 3
I am trying to use the day
column value to match with the day.x.time
column to replace the missing value in column a
. For instance, in the first row, the first value in the day
column is 2, then we should use day.2.time
value 5 to replace the first value in column a
.
If the day.x.time
value is missing, we should use -1 day or +1 day to replace the missing in column a
. For instance, in the second row, the day
column shows 5, so we should use the value in day.5.time
column, but it's also a missing value. In this case, we should use the value in day.4.time
column to replace the missing value in column a
.
You can use dat = data.frame(a = rep(NA,10), day = c(2,5,3,3,3,3,1,5,2,3), day.1.time = c(4,4,7,6,5,87,NA,6,5,9), day.2.time = sample(10), day.3.time = sample(10), day.4.time = sample(10), day.5.time = c(4,NA,4,5,6,78,54,3,3,3))
to generate the sample data.
I have tried grep(paste0("^day."dat$day,".time$", names(dat))
to match with the column but my code isn't matching in every row, so any help would be appreciated!
Upvotes: 1
Views: 89
Reputation: 73612
Using sapply
to loop over the rows and subset by day[i] + 2
column.
res <- transform(dat, a=sapply(1:nrow(dat), function(i) dat[i, dat$day[i] + 2]))
res
# a day day.1.time day.2.time day.3.time day.4.time day.5.time
# 1 5 2 4 5 7 10 4
# 2 NA 5 4 1 1 6 NA
# 3 6 3 7 9 6 7 4
# 4 8 3 6 8 8 4 5
# 5 4 3 5 2 4 5 6
# 6 2 3 87 3 2 1 78
# 7 NA 1 NA 7 5 9 54
# 8 3 5 6 6 3 2 3
# 9 10 2 5 10 9 8 3
# 10 10 3 9 4 10 3 3
The +/-2 days would require a decision rule, what to chose, if day
is NA
, but none of day - 1
and day + 1
is NA
and both have the same values.
Here a solution that goes from day
backwards and takes the first non-NA
. If it is day one, as it's the case in row 7
, we get NA
.
res <- transform(dat, a=sapply(1:nrow(dat), function(i) {
days <- dat[i, -(1:2)]
day.value <- days[dat$day[i]]
if (is.na(day.value)) {
day.value <- tail(na.omit(unlist(days[1:dat$day[i]])), 1)
if (length(day.value) == 0) day.value <- NA
}
return(day.value)
}))
res
# a day day.1.time day.2.time day.3.time day.4.time day.5.time
# 1 10 2 4 10 1 2 4
# 2 10 5 4 1 3 10 NA
# 3 2 3 7 7 2 7 4
# 4 6 3 6 2 6 6 5
# 5 10 3 5 9 10 5 6
# 6 8 3 87 6 8 4 78
# 7 NA 1 NA 3 7 1 54
# 8 3 5 6 4 4 9 3
# 9 8 2 5 8 5 8 3
# 10 9 3 9 5 9 3 3
Upvotes: 1
Reputation: 389235
Here is one way to do this.
The first part is easy to match day
column with the corresponding day.x.time
column. We can do this using matrix subsetting.
cols <- grep('day\\.\\d+\\.time', names(dat))
dat$a <- dat[cols][cbind(1:nrow(dat), dat$day)]
dat
# a day day.1.time day.2.time day.3.time day.4.time day.5.time
#1 3 2 4 3 3 3 4
#2 NA 5 4 4 10 2 NA
#3 1 3 7 8 1 8 4
#4 4 3 6 6 4 5 5
#5 6 3 5 10 6 7 6
#6 8 3 87 5 8 9 78
#7 NA 1 NA 1 7 10 54
#8 3 5 6 7 9 1 3
#9 2 2 5 2 5 6 3
#10 2 3 9 9 2 4 3
To fill values where day.x.time
column is NA
we can select the closest non-NA value in that row.
inds <- which(is.na(dat$a))
dat$a[inds] <- mapply(function(x, y)
na.omit(unlist(dat[x, cols[order(abs(y- seq_along(cols)))]])[1:4])[1],
inds, dat$day[inds])
dat
# a day day.1.time day.2.time day.3.time day.4.time day.5.time
#1 3 2 4 3 3 3 4
#2 2 5 4 4 10 2 NA
#3 1 3 7 8 1 8 4
#4 4 3 6 6 4 5 5
#5 6 3 5 10 6 7 6
#6 8 3 87 5 8 9 78
#7 1 1 NA 1 7 10 54
#8 3 5 6 7 9 1 3
#9 2 2 5 2 5 6 3
#10 2 3 9 9 2 4 3
Upvotes: 1