Reputation: 164
I have created the following dataframe based on a range of data.
df['data_classification'] = df.myDatarange.apply(lambda a:'Very good' if a>=-90
else ('Good' if (a>= -100 or a<=-91)
else ('Moderate' if (a>= -110 or a<=-101)
else ('Poor' if (a>= -123 or a<=-111)
else ('Bad' if (a>= -140 or a<=-124)
else 'Off' )))))
I am planning to plot myDatarange with data_classification and somehow show the relation with different colour. I am very confused how to plot this. I can plot myDatarange as a single lineplot, but how to relate the two data?
So far, I have tried the following:
x1 = df1.index
y1 = df1.myDatarange
f, (ax1,ax2) = plt.subplots(2,figsize=(5, 5))
ax1.plot(x1,y1,color='red', linewidth=1.9, alpha=0.9, label="myDataRange")
plt.show()
How can I plot the above range of data based on classification as area plot? Is there a better way than area plot to express my data? There are examples on the net, but not very clear on conditional side of it.
Upvotes: 0
Views: 804
Reputation: 80349
Seaborn's barplot can take a hue
parameter to color each bar corresponding to the 'data_classification'. The new 'data_classification' column can be created quicker and easier to modify via pd.cut
.
The barplot can be used as background for the lineplot to show the classification of each value.
Here is an example to get you started:
from matplotlib import pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
df = pd.DataFrame({'myDatarange': np.random.randint(-150, -50, size=50)})
ranges = [-10**6, -140, -123, -110, -100, -90, 10**6]
df['data_classification'] = pd.cut(df['myDatarange'], ranges, right=False,
labels=['Off', 'Bad', 'Poor', 'Moderate', 'Good', 'Very Good'])
fig, ax1 = plt.subplots(figsize=(12, 4))
ax1.plot(df.index, df['myDatarange'], color='blue', linewidth=2, alpha=0.9, label="myDataRange")
sns.barplot(x=df.index, y=[df['myDatarange'].min()] * len(df),
hue='data_classification', alpha=0.5, palette='inferno', dodge=False, data=df, ax=ax1)
for bar in ax1.patches: # optionally set the bars to fill the complete background, default seaborn sets the width to about 80%
bar.set_width(1)
plt.legend(bbox_to_anchor=(1.02, 1.05) , loc='upper left')
plt.tight_layout()
plt.show()
PS: If you want to the 0 at the bottom (now at the top due to the negative y-values), you could call ax.invert_yaxis()
.
Upvotes: 2