Reputation: 93
I don't understand why I should use np.hstack
to adjust vector y
y_combined=np.hstack((y_train, y_test))
And not np.vstack
.
I get an error when I use np.vstack
ValueError:all the input array dimensions for the concatenation axis must match exactly, but along dimension 1, the array at index 0 has size 105 and the array at index 1 has size 45
But I don't get that error when I use np.hstack
, why this happens?
iris = datasets.load_iris()
X=iris.data[:,[2,3]]
y=iris.target
X_train, X_test, y_train, y_test= train_test_split(X, y, test_size=0.3, random_state=1, stratify=y)
sc= StandardScaler()
sc.fit(X_train)
X_train_std=sc.transform(X_train)
X_test_std= sc.transform(X_test)
ppn= Perceptron( max_iter=40,eta0= 0.1, random_state=1)
ppn.fit(X_train_std, y_train)
y_pred= ppn.predict(X_test_std)
def plot_decision_regions(X, y, classifier,test_idx=None, resolution = 0.02):
markers = ('s', 'x', 'o', '^','v')
colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
cmap = ListedColormap(colors[:len(np.unique(y))])
x1_min, x1_max = X[:, 0].min() -1, X[:,0].max() + 1
x2_min, x2_max = X[:, 1].min() -1, X[:,1].max() + 1
xx1, xx2= np.meshgrid (np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution))
Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
Z = Z.reshape(xx1.shape)
plt.contourf(xx1, xx2, Z, alpha= 0.3, cmap = cmap)
plt.xlim(xx1.min(), xx1.max())
plt.ylim(xx2.min(), xx2.max())
for idx, cl in enumerate (np.unique(y)):
plt.scatter (x=X[y == cl, 0], y= X[y == cl, 1], alpha=0.8, c=colors[idx], marker= markers [idx], label = cl, edgecolor = 'black')
if test_idx:
X_test, y_test= X[test_idx,:], y[test_idx]
plt.scatter(X_test[:,0], X_test[:,1], c='', edgecolor= 'black', alpha= 0.9, linewidth=1, marker='o', s=100, label='test set' )
X_combined_std= np.vstack((X_train_std, X_test_std))
y_combined=np.hstack((y_train, y_test))
plot_decision_regions(X=X_combined_std, y=y_combined, classifier=ppn, test_idx=range(105,150))
plt.xlabel('sepal length [standardized]')
plt.ylabel('petal length [standardized]')
plt.legend(loc='upper left')
plt.show()
Upvotes: 0
Views: 1139
Reputation: 26886
Assume we have two arrays of shape (2, 3)
each, say:
a = np.array([[11, 12, 13], [14, 15, 16]])
b = np.array([[17, 18, 19], [20, 21, 22]])
Both hstack()
and vstack()
would stack the two arrays, but along different dimensions:
np.vstack((a, b))
# array([[11, 12, 13],
# [14, 15, 16],
# [17, 18, 19],
# [20, 21, 22]])
np.hstack((a, b))
# array([[11, 12, 13, 17, 18, 19],
# [14, 15, 16, 20, 21, 22]])
Now you can do both hstack()
and vstack()
because a
and b
do have the same shape, but what is the condition on the shapes if they are not the same?
For vstack
, the second dimension (index 1) must match, while for hstack
, it is the first dimension (index 0) that must match.
The error your are getting, is telling you precisely this.
Upvotes: 1