Reputation: 21
Here is the sample code.
df = pd.DataFrame({'A': ['2020-04-28','2020-04-28','2020-04-29','2020-04-29','2020-04-30','2020-04-30'],
'B': ['11-000-000-246_1064461', '30-000-015-488_1191035','11-000-000-246_1064461','30-000-015-488_1191035','30-000-015-488_1191035','11-000-000-246_1064461'],
'C': [[4700652221, 4700652723],[4700653241], 0, [4700652781, 4700656546],[4700646464, 4700645646],[4700652748, 4700659873, 4700659238]]
})
And my dataframe looks like:
A B C
0 2020-04-28 11-000-000-246_1064461 [4700652221, 4700652723]
1 2020-04-28 30-000-015-488_1191035 [4700653241]
2 2020-04-29 11-000-000-246_1064461 []
3 2020-04-29 30-000-015-488_1191035 [4700652781, 4700656546]
4 2020-04-30 30-000-015-488_1191035 [4700646464, 4700645646]
5 2020-04-30 11-000-000-246_1064461 [4700652748, 4700659873, 4700659238]
I tried to get a new column called D containing an array of all C array items in a rolling window of 2 days with this code, but it doesn't worked:
df = df.groupby(['A','B'])['C'].rolling(2).apply(list).reset_index(name = 'D')
I need to get something like this:
A B D
0 2020-04-28 11-000-000-246_1064461 Nan
1 2020-04-28 30-000-015-488_1191035 Nan
2 2020-04-29 11-000-000-246_1064461 [4700652221, 4700652723]
3 2020-04-29 30-000-015-488_1191035 [4700652781, 4700656546, 4700653241]
4 2020-04-30 30-000-015-488_1191035 [4700646464, 4700645646, 4700652781, 4700656546]
5 2020-04-30 11-000-000-246_1064461 [4700652748, 4700659873, 4700659238]
Upvotes: 2
Views: 962
Reputation: 71689
Use, DataFrame.groupby
on column B
then use .transform
on the column C
. In this transform method use Series.shift
to shift the column and then concatenate the column with itself:
df['D'] = (
df.groupby('B')['C']
.transform(lambda s: s + s.shift(1))
)
df1 = df.drop('C', 1)
# print(df1)
A B D
0 2020-04-28 11-000-000-246_1064461 NaN
1 2020-04-28 30-000-015-488_1191035 NaN
2 2020-04-29 11-000-000-246_1064461 [4700652221, 4700652723]
3 2020-04-29 30-000-015-488_1191035 [4700652781, 4700656546, 4700653241]
4 2020-04-30 30-000-015-488_1191035 [4700646464, 4700645646, 4700652781, 4700656546]
5 2020-04-30 11-000-000-246_1064461 [4700652748, 4700659873, 4700659238]
Upvotes: 1