Reputation: 14309
Is there a dummy Scaler to plug into a Pipeline that does nothing? i.e.
# define the SVM model using the RBF kernel
model = Pipeline(steps=[('preprocess', MinMaxScaler()),
('model', SVC(kernel='rbf',
gamma='scale',
probability=True,
class_weight='balanced',
cache_size=1000,
tol=1e-10,
shrinking=True,
decision_function_shape='ovr',
break_ties=False,
C=3.0))])
params = [{'preprocess': [DummyDoNothingScaler(), MaxAbsScaler(), MinMaxScaler(), StandardScaler()],
'model__gamma': ['scale', 'auto'],
'model__C': [1.0, 1.01, 1.015,3.0]
}]
Is there a DummyDoNothingScaler
?
Upvotes: 2
Views: 1156
Reputation: 81
I think Skywalker provided a realy clean solution, but if you wanna create some objects to test, you could try below:
from sklearn.preprocessing import FunctionTransformer
DummyScaler = FunctionTransformer(lambda x: x)
Hope it helps!
Upvotes: 8
Reputation: 14309
Actually using None
works perfectly as "do nothing" i.e.
params = [{'preprocess': [None, MaxAbsScaler(), MinMaxScaler(), StandardScaler()],
'model__gamma': ['scale', 'auto'],
'model__C': [1.0, 1.01, 1.015,3.0]
}]
Upvotes: 2