Reputation: 23
So basically I have a Xarray and a NumPy array representing the same data of a spectrogram. The following code is used to plot the Xarrray with very good clarity(it cuts the spectrogram above the max value)
plt.figure(figsize=(3,5))
data_slice = data['__xarray_dataarray_variable__'].sel(slices=41625.0)
max_value = np.log(data.sel(slices=slice(67.5, 5.999625e+05)).max(xr.ALL_DIMS)['__xarray_dataarray_variable__'].values)
xr.ufuncs.log(data_slice).plot(cmap='magma', vmin=0, vmax = max_value*.7)
Here we have the Xarray -> data and we select a particular piece of it and then plot it using xf.plot. Similarly, I have a Numpy array that is in the shape of (256, 12333) where 12333 represents the number of time stamps and 256 represents the frequency bins. How do I tell my plot to shoe data until just the max value in the thing that I need to plot? I want to do this so that I get a magnified image of the spectrogram so that I can see the sounds clearly. As of now, I have been plotting my numpy array as this -
plt.imshow(data[:, 30:100])
Upvotes: 0
Views: 364
Reputation: 3552
Why not merely converting it to a DataArray?
Then you'll take advantage of xarray's plotting utilities.
In particular, you'll be able to use the robust=True
kwarg that will automatically remove potential outliers from the dynamic color range.
There is also automatic labeling, using "long_name"
attribute.
freq_count, time_count = 256, 12333
data = np.random.randn(freq_count, time_count)
da = xr.DataArray(
dims=("frequency", "time"),
data=data,
coords=dict(
frequency=np.arange(freq_count),
time=np.arange(time_count),
),
attrs=dict(long_name="Spectral intensity over time")
)
Plotting:
fig, axes = plt.subplots(ncols=2)
da.plot.imshow(robust=False, ax=axes[0])
da.plot.imshow(robust=True, ax=axes[1])
plt.show()
A comparison between the robust=False
plot and the robust=True
plot:
Upvotes: 1