Reputation: 551
I don't understand this error here is my model
L_branch = Sequential()
L_branch.add(Embedding(vocab_size, output_dim=15, input_length=3000, trainable=True))
L_branch.add(Conv1D(50, activation='relu', kernel_size=70, input_shape=(3000, )))
L_branch.add(MaxPooling1D(15))
L_branch.add(Flatten())
# second model
R_branch = Sequential()
R_branch.add(Dense(14, input_shape=(14,), activation='relu'))
R_branch.add(Flatten())
merged = Concatenate()([L_branch.output, R_branch.output])
out = Dense(70, activation='softmax')(merged)
final_model = Model([L_branch.input, R_branch.input], out)
final_model.compile(
loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
final_model.summary()
final_model.fit(
[input1, input2],
Y_train,
batch_size=200,
epochs=1,
verbose=1,
validation_split=0.1
)
where input 1 has the shape (5039, 3000)
and input 2 (5039, 14)
so why is the flatten dense asking for a third dimension? if dense do not change the number of dimensions like embedding layer or convolution?
Upvotes: 1
Views: 253
Reputation: 22031
remove Flatten layer... no need to use it. here the full structure
L_branch = Sequential()
L_branch.add(Embedding(vocab_size, output_dim=15, input_length=3000, trainable=True))
L_branch.add(Conv1D(50, activation='relu', kernel_size=70, input_shape=(3000, )))
L_branch.add(MaxPooling1D(15))
L_branch.add(Flatten())
# second model
R_branch = Sequential()
R_branch.add(Dense(14, input_shape=(14,), activation='relu'))
merged = Concatenate()([L_branch.output, R_branch.output])
out = Dense(70, activation='softmax')(merged)
final_model = Model([L_branch.input, R_branch.input], out)
final_model.compile(
loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
final_model.summary()
Upvotes: 1