Reputation: 141
As per this - How to use a pretrained model from s3 to predict some data? , I was trying to use an existing model to create an endpoint, but I was facing the following error -
Traceback (most recent call last):
File "/miniconda3/lib/python3.7/site-packages/gunicorn/workers/base_async.py", line 55, in handle
self.handle_request(listener_name, req, client, addr)
File "/miniconda3/lib/python3.7/site-packages/gunicorn/workers/ggevent.py", line 143, in handle_request
super().handle_request(listener_name, req, sock, addr)
File "/miniconda3/lib/python3.7/site-packages/gunicorn/workers/base_async.py", line 106, in handle_request
respiter = self.wsgi(environ, resp.start_response)
File "/miniconda3/lib/python3.7/site-packages/sagemaker_sklearn_container/serving.py", line 124, in main
serving_env.module_dir)
File "/miniconda3/lib/python3.7/site-packages/sagemaker_sklearn_container/serving.py", line 101, in import_module
user_module = importlib.import_module(module_name)
File "/miniconda3/lib/python3.7/importlib/__init__.py", line 118, in import_module
if name.startswith('.'):
As per Problem deploying the best estimator gotten with sagemaker.estimator.Estimator (w/ sklearn custom image), https://forums.aws.amazon.com/thread.jspa?threadID=313838 , I am using the correct env variables (along with SAGEMAKER_DEFAULT_INVOCATIONS_ACCEPT
, SAGEMAKER_PROGRAM
, and SAGEMAKER_SUBMIT_DIRECTORY
), but somehow the health checks are failing while creation of the endpoint.
I tried the similar thing via AWS console and it is working surprisingly. Is there a work around for this to do it via code?
My code snippet:
trainedmodel = sagemaker.model.Model(
model_data='s3://my-bucket/my-key/output/model.tar.gz',
image='my-image',
env={"SAGEMAKER_DEFAULT_INVOCATIONS_ACCEPT": "text/csv",
"SAGEMAKER_USE_NGINX": "True",
"SAGEMAKER_WORKER_CLASS_TYPE": "gevent",
"SAGEMAKER_KEEP_ALIVE_SEC": "60",
"SAGEMAKER_CONTAINER_LOG_LEVEL": "20",
"SAGEMAKER_ENABLE_CLOUDWATCH_METRICS": "false",
"SAGEMAKER_PROGRAM": "my-script.py",
"SAGEMAKER_REGION": "us-east-1",
"SAGEMAKER_SUBMIT_DIRECTORY": "s3://my-bucket/my-key/source/sourcedir.tar.gz"
},
role=role)
trainedmodel.deploy(initial_instance_count=1, instance_type='ml.c4.xlarge', endpoint_name = 'my-endpoint')
Upvotes: 7
Views: 8916
Reputation: 1
What worked for me was creating the model from a training job and then using the env variables listed in the question:
training_src_file = "s3://bucket_data_assets/training-src-files.tar.gz"
churn_model = sagemaker_session.create_model_from_job(
training_job_name=completed_training_job_name,
name=None,
role=role, image_uri=None,
model_data_url=None,
env={"SAGEMAKER_DEFAULT_INVOCATIONS_ACCEPT": "text/csv",
"SAGEMAKER_USE_NGINX": "True",
"SAGEMAKER_WORKER_CLASS_TYPE": "gevent",
"SAGEMAKER_KEEP_ALIVE_SEC": "60",
"SAGEMAKER_CONTAINER_LOG_LEVEL": "20",
"SAGEMAKER_ENABLE_CLOUDWATCH_METRICS": "false",
"SAGEMAKER_PROGRAM": "train.py", #the entry point present in training-src-files.tar.gz
"SAGEMAKER_REGION": "us-east-1",
"SAGEMAKER_SUBMIT_DIRECTORY": training_src_file,
}
Upvotes: 0
Reputation: 29
Try using: sagemaker.model.FrameworkModel
to create model with required scripts
Upvotes: 0
Reputation: 332
Based on your stack trace, it looks like the container cannot find your entry_point module (my-script.py).
By default, the container will add 'opt/ml/code'
to the Python path and modules under this directory can be imported.
You can modify this path to other values by providing values to SAGEMAKER_BASE_PATH
(default to '/opt/ml'
) and put your script under '<SAGEMAKER_BASE_PATH>/code'
and the container will import module 'SAGEMAKER_BASE_PATH>/code/SAGEMAKER_PROGRAM'
Upvotes: 0
Reputation: 111
For anyone else landing here, I had a similar issue when creating sklearn models from a ModelPackage.
Error message in endpoint logs when trying to create endpoint:
AttributeError: 'NoneType' object has no attribute 'startswith'
Solved with the following when defining the model package:
SAGEMAKER_SUBMIT_DIRECTORY
should be set to the directory on the container, normally '/opt/ml/model/'
SAGEMAKER_PROGRAM
should be set to the name of the serving script, e.g. 'sagemaker_serve.py'These are specified under the 'Environment' section part of each entry in the 'Containers' section.
Upvotes: 6