Reputation: 214
org.apache.hadoop.hive.ql.metadata.HiveException: java.lang.UnsupportedOperationException: Parquet does not support timestamp. See HIVE-6384;
Getting above error while executing following code in Azure Databricks.
spark_session.sql("""
CREATE EXTERNAL TABLE IF NOT EXISTS dev_db.processing_table
(
campaign STRING,
status STRING,
file_name STRING,
arrival_time TIMESTAMP
)
PARTITIONED BY (
Date DATE)
ROW FORMAT SERDE
'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
STORED AS INPUTFORMAT
'org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'
LOCATION "/mnt/data_analysis/pre-processed/"
""")
Upvotes: 1
Views: 2683
Reputation: 31460
As per Hive-6384 Jira, Starting from Hive-1.2 you can use Timestamp,date
types in parquet tables.
Workarounds for Hive < 1.2 version:
1. Using String type:
CREATE EXTERNAL TABLE IF NOT EXISTS dev_db.processing_table
(
campaign STRING,
status STRING,
file_name STRING,
arrival_time STRING
)
PARTITIONED BY (
Date STRING)
Stored as parquet
Location '/mnt/data_analysis/pre-processed/';
Then while processing you can cast arrival_time
,Date
cast to timestamp
,date
types.
Using a view
and cast the columns but views are slow.
2. Using ORC format:
CREATE EXTERNAL TABLE IF NOT EXISTS dev_db.processing_table
(
campaign STRING,
status STRING,
file_name STRING,
arrival_time Timestamp
)
PARTITIONED BY (
Date date)
Stored as orc
Location '/mnt/data_analysis/pre-processed/';
ORC supports both timestamp
,date
type
Upvotes: 1