Reputation: 233
Is there any quicker way to physically transpose a large 2D numpy matrix than array.transpose.copy()? And are there any routines for doing it with efficient memory use?
Upvotes: 2
Views: 474
Reputation: 3254
I assume that you need to do a row-wise operation that uses the CPU cache more efficiently if rows are contiguous in memory, and you don't have enough memory available to make a copy.
Wikipedia has an article on in-place matrix transposition. It turns out that such a transposition is nontrivial. Here is a follow-the-cycles algorithm as described there:
import numpy as np
from numba import njit
@njit # comment this line for debugging
def transpose_in_place(a):
"""In-place matrix transposition for a rectangular matrix.
https://stackoverflow.com/a/62507342/6228891
Parameter:
- a: 2D array. Unless it's a square matrix, it will be scrambled
in the process.
Return:
- transposed array, using the same in-memory data storage as the
input array.
This algorithm is typically 10x slower than a.T.copy().
Only use it if you are short on memory.
"""
if a.shape == (1, 1):
return a # special case
n, m = a.shape
# find max length L of permutation cycle by starting at a[0,1].
# k is the index in the flat buffer; i, j are the indices in
# a.
L = 0
k = 1
while True:
j = k % m
i = k // m
k = n*j + i
L += 1
if k == 1:
break
permut = np.zeros(L, dtype=np.int32)
# Now do the permutations, one cycle at a time
seen = np.full(n*m, False)
aflat = a.reshape(-1) # flat view
for k0 in range(1, n*m-1):
if seen[k0]:
continue
# construct cycle
k = k0
permut[0] = k0
q = 1 # size of permutation array
while True:
seen[k] = True
# note that this is slightly faster than the formula
# on Wikipedia, k = n*k % (n*m-1)
i = k // m
j = k - i*m
k = n*j + i
if k == k0:
break
permut[q] = k
q += 1
# apply cyclic permutation
tmp = aflat[permut[q-1]]
aflat[permut[1:q]] = aflat[permut[:q-1]]
aflat[permut[0]] = tmp
aT = aflat.reshape(m, n)
return aT
def test_transpose(n, m):
a = np.arange(n*m).reshape(n, m)
aT = a.T.copy()
assert np.all(transpose_in_place(a) == aT)
def roundtrip_inplace(a):
a = transpose_in_place(a)
a = transpose_in_place(a)
def roundtrip_copy(a):
a = a.T.copy()
a = a.T.copy()
if __name__ == '__main__':
test_transpose(1, 1)
test_transpose(3, 4)
test_transpose(5, 5)
test_transpose(1, 5)
test_transpose(5, 1)
test_transpose(19, 29)
Even though I'm using numba.njit
here so that the loops in the transpose function are compiled, it's still quite a bit slower than a copy-transpose.
n, m = 1000, 10000
a_big = np.arange(n*m, dtype=np.float64).reshape(n, m)
%timeit -r2 -n10 roundtrip_copy(a_big)
54.5 ms ± 153 µs per loop (mean ± std. dev. of 2 runs, 10 loops each)
%timeit -r2 -n1 roundtrip_inplace(a_big)
614 ms ± 141 ms per loop (mean ± std. dev. of 2 runs, 1 loop each)
Upvotes: 1
Reputation: 231355
It may be worth looking at what transpose does, just so we are clear about what you mean by 'physically tranposing'.
Start with a small (4,3) array:
In [51]: arr = np.array([[1,2,3],[10,11,12],[22,23,24],[30,32,34]])
In [52]: arr
Out[52]:
array([[ 1, 2, 3],
[10, 11, 12],
[22, 23, 24],
[30, 32, 34]])
This is stored with a 1d data buffer, which we can display with ravel
:
In [53]: arr.ravel()
Out[53]: array([ 1, 2, 3, 10, 11, 12, 22, 23, 24, 30, 32, 34])
and strides
which tell it to step columns by 8 bytes, and rows by 24 (3*8):
In [54]: arr.strides
Out[54]: (24, 8)
We can ravel with the "F" order - that's going down the rows:
In [55]: arr.ravel(order='F')
Out[55]: array([ 1, 10, 22, 30, 2, 11, 23, 32, 3, 12, 24, 34])
While [53] is a view
, [55] is a copy.
Now the transpose:
In [57]: arrt=arr.T
In [58]: arrt
Out[58]:
array([[ 1, 10, 22, 30],
[ 2, 11, 23, 32],
[ 3, 12, 24, 34]])
This a view
; we can tranverse the [53] data buffer, going down rows with 8 byte steps. Doing calculations with the arrt
is basically just as fast as with arr
. With the strided
iteration, order 'F' is just as fast as order 'C'.
In [59]: arrt.strides
Out[59]: (8, 24)
the original order:
In [60]: arrt.ravel(order='F')
Out[60]: array([ 1, 2, 3, 10, 11, 12, 22, 23, 24, 30, 32, 34])
but doing a 'C' ravel creates a copy, same as [55]
In [61]: arrt.ravel(order='C')
Out[61]: array([ 1, 10, 22, 30, 2, 11, 23, 32, 3, 12, 24, 34])
Doing a copy of the transpose makes an array that's transpose with 'C' order. This is your 'physical transpose':
In [62]: arrc = arrt.copy()
In [63]: arrc.strides
Out[63]: (32, 8)
Reshaping a transpose as done with [61] does make a copy, but usually we don't need to explicitly make the copy. I think the only reason to do so is to avoid several redundant copies in later calculations.
Upvotes: 2
Reputation: 1489
Whatever you do will require O(n^2)
time and memory. I would assume that .transpose
and .copy
(written in C) will be the most efficient choice for your application.
Edit: this assumes you actually need to copy the matrix
Upvotes: 1