Reputation: 113
I have two data sets, data1
and data2
:
data1 <- data.frame(ID = 1:6,
A = c("a1", "a2", NA, "a4", "a5", NA),
B = c("b1", "b2", "b3", NA, "b5", NA),
stringsAsFactors = FALSE)
data1
ID A B
1 a1 b1
2 a2 b2
3 NA b3
4 a4 NA
5 a5 b5
6 NA NA
and
data2 <- data.frame(ID = 1:6,
A = c(NA, "a2", "a3", NA, "a5", "a6"),
B = c(NA, "b2.wrong", NA, "b4", "b5", "b6"),
stringsAsFactors = FALSE)
data2
ID A B
1 NA NA
2 a2 b2.wrong
3 a3 NA
4 NA b4
5 a5 b5
6 a6 b6
I would like to merge them by ID
so that the resultant merged dataset, data.merged
, populates fields form both datasets, but chooses values from data1
whenever there are possible values from both datasets.
I.e., I would like the final dataset, data.merge
, to be:
ID A B
1 a1 b1
2 a2 b2
3 a3 b3
4 a4 b4
5 a5 b5
6 a6 b6
I have looked around, finding similar but not exact answers.
Upvotes: 1
Views: 108
Reputation: 388817
You can join the data and use coalesce
to select the first non-NA value.
library(dplyr)
data1 %>%
inner_join(data2, by = 'ID') %>%
mutate(A = coalesce(A.x, A.y),
B = coalesce(B.x, B.y)) %>%
select(names(data1))
# ID A B
#1 1 a1 b1
#2 2 a2 b2
#3 3 a3 b3
#4 4 a4 b4
#5 5 a5 b5
#6 6 a6 b6
Or in base R comparing values with NA
:
transform(merge(data1, data2, by = 'ID'),
A = ifelse(is.na(A.x), A.y, A.x),
B = ifelse(is.na(B.x), B.y, B.x))[names(data1)]
Upvotes: 1