Reputation: 1792
Hi I have the following DataFrame:
# Import pandas library
import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
# initialize list of lists
data = [['tom', 10,1], ['nick', 15,0], ['tom', 14,1], ['jason', 15,0], ['nick', 18,1], ['jason', 15,0], ['jason', 17,1]
, ['tom', 14,0], ['nick',16 ,1], ['tom', 22,1]]
# Create the pandas DataFrame
df = pd.DataFrame(data, columns = ['Name', 'Attempts','Target'])
# print dataframe.
df
Name Attempts Target
0 tom 10 1
1 nick 15 0
2 tom 14 1
3 jason 15 0
4 nick 18 1
5 jason 15 0
6 jason 17 1
7 tom 14 0
8 nick 16 1
9 tom 22 1
And i am hoping to simply get a total count next to each name so that it becomes:
Name Attempts Target totalentries
0 tom 10 1 4
1 nick 15 0 3
2 tom 14 1 4
3 jason 15 0 3
4 nick 18 1 3
5 jason 15 0 3
6 jason 17 1 3
7 tom 14 0 4
8 nick 16 1 3
9 tom 22 1 4
have tried:
df['totalentries'] = df.groupby('Name').nunique()
but get a ValueError: Wrong number of items passed 8, placement implies 1
Any ideas? thanks verymuch!
Upvotes: 0
Views: 63
Reputation: 384
You should try this:
df["totalentries"] = [df.groupby("Name")["Name"].count()[i] for i in df["Name"].values]
This will give you the required output.
Upvotes: 1
Reputation: 863741
Use GroupBy.transform
with specified column after groupby
with aggregate function:
df['totalentries'] = df.groupby('Name')['Target'].transform('nunique')
If need counts values:
df['totalentries'] = df.groupby('Name')['Target'].transform('size')
Upvotes: 2