Reputation: 65
I have a very large dataframe (~10^8 rows) where I need to change some values. The algorithm I use is complex so I tried to break down the issue into a simple example below. I mostly programmed in C++, so I keep thinking in for-loops. I know I should vectorize but I am new to python and very new to pandas and cannot come up with a better solution. Any solutions which increase performance are welcome.
#!/usr/bin/python3
import numpy as np
import pandas as pd
data = {'eventID': [1, 1, 1, 2, 2, 3, 4, 5, 6, 6, 6, 6, 7, 8],
'types': [0, -1, -1, -1, 1, 0, 0, 0, -1, -1, -1, 1, -1, -1]
}
mydf = pd.DataFrame(data, columns=['eventID', 'types'])
print(mydf)
MyIntegerCodes = np.array([0, 1])
eventIDs = np.unique(mydf.eventID.values) # can be up to 10^8 values
for val in eventIDs:
currentTypes = mydf[mydf.eventID == val].types.values
if (0 in currentTypes) & ~(1 in currentTypes):
mydf.loc[mydf.eventID == val, 'types'] = 0
if ~(0 in currentTypes) & (1 in currentTypes):
mydf.loc[mydf.eventID == val, 'types'] = 1
print(mydf)
Any ideas?
EDIT: I was ask to explain what I do with my for-loops. For every eventID I want to know if all corresponding types contain a 1 or a 0 or both. If they contain a 1, all values which are equal to -1 should be changed to 1. If the values are 0, all values equal to -1 should be changed to 0. My problem is to do this efficiently for each eventID independently. There can be one or multiple entries per eventID.
Input of example:
eventID types
0 1 0
1 1 -1
2 1 -1
3 2 -1
4 2 1
5 3 0
6 4 0
7 5 0
8 6 -1
9 6 -1
10 6 -1
11 6 1
12 7 -1
13 8 -1
Output of example:
eventID types
0 1 0
1 1 0
2 1 0
3 2 1
4 2 1
5 3 0
6 4 0
7 5 0
8 6 1
9 6 1
10 6 1
11 6 1
12 7 -1
13 8 -1
Upvotes: 1
Views: 91
Reputation: 71707
First we create boolean masks m1
and m2
using Series.eq
then use DataFrame.groupby
on this mask and transform using any
, then using np.select
chose the elements from 1, 0
depending upon the conditions m1 or m2
:
m1 = mydf['types'].eq(1).groupby(mydf['eventID']).transform('any')
m2 = mydf['types'].eq(0).groupby(mydf['eventID']).transform('any')
mydf['types'] = np.select([m1 , m2], [1, 0], mydf['types'])
Result:
# print(mydf)
eventID types
0 1 0
1 1 0
2 1 0
3 2 1
4 2 1
5 3 0
6 4 0
7 5 0
8 6 1
9 6 1
10 6 1
11 6 1
12 7 -1
13 8 -1
Upvotes: 1