Reputation: 155
I have the following exercise:
'''FIBONACCI
Compute the n'th Fibonacci number fib(n), defined recursively:
fib(0) == 0, fib(1) == 1, fib(n) = fib(n - 1) + fib(n - 2)
Input:
A single line containing an integer n, 0 <= n <= 10.000
Output:
A single line with the integer fib(n).
Example:
Input: 10
Output: 55
'''
My raw attempt so to speak:
def fib(n):
if n <= 1:
return n
if n >= 2:
return fib(n-1) + fib(n-2)
n = int(input()) # Read integer n from standard input
print(fib(n))
However this code can only handle up to around n = 500 before reaching maximum recursion depth. To increase that number and create code that can handle up to 10 000, I have tried two things: 1) To increase maximum recursion depth and 2) To use memoization in the form of a decorator. Now the code can handle up to about n = 2000:
import sys
from functools import lru_cache
sys.setrecursionlimit(10000)
@lru_cache(maxsize=None)
def fib(n):
if n <= 1:
return n
if n >= 2:
return fib(n-1) + fib(n-2)
n = int(input()) # Read integer n from standard input
print(fib(n))
With n > 2000 I get an memory error (stack overflow). How do I fix this? What more can I do? Is it even possible with my recursive function or do I have to change it in some way to make it work? Any help is appreciated!
Upvotes: 2
Views: 540
Reputation: 534
In the task they give a recursive definition of the fibonacci sequence but nothing is said about a recursive implementation. This is an iterative implementation of the recursive definition:
def fib(n):
if n == 0:
return 0
f1, f2 = 0, 1
for i in range(1, n + 1):
f1, f2 = f2, f1 + f2
return f2
Upvotes: 0
Reputation: 13079
A simple implementation of the n
th Fibonacci number. There is no need to use recursion.
def fib(n):
if n == 0:
return 0
elif n == 1:
return 1
else:
fa, fb = 0, 1
for i in range(2, n + 1):
fa, fb = fb, fa + fb
return fb
(Note: this is not the fastest. It is O(n). An O(log n) solution is available -- e.g. here, see their method 5.)
Upvotes: 2
Reputation: 4799
With a recursive implementation, you will almost end up with trouble when trying to go to such great depths. Like @alaniwi stated, you can always implement it in a non-recursive method. Here's a O(n)
time solution with a O(1)
space complexity. (Note: Theoretically you can even get a O(log n)
solution.)
from collections import deque
def fib(n):
past = deque([1], maxlen=2)
for _ in range(n): past.appendleft(sum(past))
return past[0]
Because the fibonacci function only requires the last two values of f, we can store only those and bubble upwards.
Upvotes: 0