Reputation: 21
I am trying to do sensitivity analysis using R. My data set has few continuous explanatory variables and a categorical response variable (7 categories).
I tried to run the below mentioned code.
model=train(factor(mode)~Time+Cost+Age+Income,
method="nnet",
preProcess("center","scale"),
data=train,
verbose=F,
trControl=trainControl(method='cv', verboseIter = F),
tuneGrid=expand.grid(.size=c(1:20), .decay=c(0,0.001,0.01,0.1)))
After getting the output through this code, I tried to develop Lek's profile using the below mentioned code.
Lekprofile(model)
However, I got the error stating "Errors in xvars[, x_names]: subscript out of bound"
Please help me to resolve the error.
Upvotes: 2
Views: 442
Reputation: 46908
It doesn't work for a classification model , for example, if we use a regression model:
library(caret)
library(NeuralNetTools)
library(mlbench)
data(BostonHousing)
str(BostonHousing)
'data.frame': 506 obs. of 14 variables:
$ crim : num 0.00632 0.02731 0.02729 0.03237 0.06905 ...
$ zn : num 18 0 0 0 0 0 12.5 12.5 12.5 12.5 ...
$ indus : num 2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87 ...
$ chas : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
$ nox : num 0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 0.524 ...
$ rm : num 6.58 6.42 7.18 7 7.15 ...
$ age : num 65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 ...
$ dis : num 4.09 4.97 4.97 6.06 6.06 ...
$ rad : num 1 2 2 3 3 3 5 5 5 5 ...
$ tax : num 296 242 242 222 222 222 311 311 311 311 ...
$ ptratio: num 15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 ...
$ b : num 397 397 393 395 397 ...
$ lstat : num 4.98 9.14 4.03 2.94 5.33 ...
$ medv : num 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...
We train the model, exclude the categorical chas
:
model = train(medv ~ .,data=BostonHousing[,-4],method="nnet",
trControl=trainControl(method="cv",number=10),
tuneGrid=data.frame(size=c(5,10,20),decay=0.1))
lekprofile(model)
You can see the y-axis is meant to be continuous. We can try to discretize our response variable medv
and you can see it crashes:
BostonHousing$medv = cut(BostonHousing$medv,4)
model = train(medv ~ .,data=BostonHousing[,-4],method="nnet",
trControl=trainControl(method="cv",number=10),
tuneGrid=data.frame(size=c(5,10,20),decay=0.1))
lekprofile(model)
Error in `[.data.frame`(preds, , ysel, drop = FALSE) :
undefined columns selected
Upvotes: 1