Reputation: 388
I have this DataFrame:
df4=pd.DataFrame({'Date':['2020-05-19'],
'A':[153],
'B':[139],
'C':[165],
'D':[165],
'E':[123],
'F':[135],
'G':[137],})
df4['Date']=pd.to_datetime(df4['Date'])
df4 = df4.set_index('Date')
Then I transformed df in order to work with numpy
row=df4.to_records()[0]
amount = 10000
And I created this for loop:
for i in np.arange(1,len(row),1):
test=amount/row[i] if row[i]<=150 else 0
print(test)
This is the result of the variable test
:
0
71.94244604316546
0
0
81.30081300813008
74.07407407407408
72.99270072992701
And I would like to know if there is a way to transform all the results of test
into a numpy array? Hence the result should be something like this :
test = [0,71.94244604316546,0,0,81.30081300813008,74.07407407407408,72.99270072992701]
Thanks
Upvotes: 0
Views: 31
Reputation: 19123
Alternatively to the list option, you can get the array directly from the iterator:
res = np.fromiterator((amount/row[i] if row[i]<=150 else 0 for i in np.arange(1,len(row),1)), dtype=int count=len(row)-1)
Note that, since you know how long the iterable is, you can pass the count
parameter to make it slightly faster (numpy knows how much memory to preallocate and skips resizing as it loops)
Upvotes: 1
Reputation: 1531
You can create list
and convert to numpy
array:
import numpy as np
output = []
for i in np.arange(1,len(row),1):
test=amount/row[i] if row[i]<=150 else 0
output.append(test)
np.array(output)
Upvotes: 1