Karan Jagdale
Karan Jagdale

Reputation: 11

Using capacity and time window constraints with pick up and delivery problem

I am new to the OR-Tools libraries. I am trying to solve pick up and delivery problem with capacity and time window constraints. The code is working fine with 5 location nodes (2 pick up and 2 delivery locations and 1 depot location). But, when I change the number of nodes to 17(with 1 depot location), the code does not work and the kernel dies in Spyder editor for Python 3.5 without giving any error. And, if I run it in the terminal it produces following output.

terminate called after throwing an instance of 'std::bad_alloc'
  what():  std::bad_alloc
Aborted (core dumped)

System specifications are: OS-Ubuntu 16.04 LTS, Python version - 3.5.2, OR-Tools version - 7.7, RAM - 8GB, Graphics - 2GB AMD Radeon. I have written the code by combining the relevant parts of the sample codes given on the OR-Tools website. Following is the code with 16 nodes which is not working:

from __future__ import print_function
from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp


def create_data_model():
    """Stores the data for the problem."""
    data = {}
    data['time_matrix'] = [
        [0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7],
        [6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14],
        [9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9],
        [8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16],
        [7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14],
        [3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8],
        [6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5],
        [2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10],
        [3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6],
        [2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5],
        [6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4],
        [6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10],
        [4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8],
        [4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6],
        [5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2],
        [9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9],
        [7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0],
    ]
    data['time_windows'] = [
        (0, 1800),  # depot
        (0, 1800),  # 1
        (0, 1800),  # 2
        (0, 1800),  # 3
        (0, 1800),  # 4
        (0, 1800),  # 5
        (0, 1800),  # 6
        (0, 1800),  # 7
        (0, 1800),  # 8
        (0, 1800),  # 9
        (0, 1800),  # 10
        (0, 1800),  # 11
        (0, 1800),  # 12
        (0, 1800),  # 13
        (0, 1800),  # 14
        (0, 1800),  # 15
        (0, 1800),  # 16
    ]
    data['pickups_deliveries'] = [
        [1, 6],     #2
        [2, 10],    #4
        [4, 3],     #1
        [5, 9],     #2
        [7, 8],     #5
        [15, 11],   #3
        [13, 12],   #1
        [16, 14],   #3
        [6, 15],    #5
        [7, 14],    #6
        [12, 9],    #3
    ]
    data['demands'] = [0, 2, 4, -1, 1, 2, 3, 11, -5, -5, -4, -3, 2, 1, -9, -2, 3]
    data['vehicle_capacities'] = [20, 20, 20, 20]
    data['num_vehicles'] = 4
    data['depot'] = 0
    return data


def print_solution(data, manager, routing, solution):
    """Prints solution on console."""
    time_dimension = routing.GetDimensionOrDie('Time')
    total_time = 0
    for vehicle_id in range(data['num_vehicles']):
        index = routing.Start(vehicle_id)
        plan_output = 'Route for vehicle {}:\n'.format(vehicle_id)
        while not routing.IsEnd(index):
            time_var = time_dimension.CumulVar(index)
            plan_output += '{0} Time({1},{2}) -> '.format(
                manager.IndexToNode(index), solution.Min(time_var),
                solution.Max(time_var))
            index = solution.Value(routing.NextVar(index))
        time_var = time_dimension.CumulVar(index)
        plan_output += '{0} Time({1},{2})\n'.format(manager.IndexToNode(index),
                                                    solution.Min(time_var),
                                                    solution.Max(time_var))
        plan_output += 'Time of the route: {}min\n'.format(
            solution.Min(time_var))
        print(plan_output)
        total_time += solution.Min(time_var)
    print('Total time of all routes: {}min'.format(total_time))


def main():
    """Solve the VRP with time windows."""
    # Instantiate the data problem.
    data = create_data_model()

    # Create the routing index manager.
    manager = pywrapcp.RoutingIndexManager(len(data['time_matrix']),
                                           data['num_vehicles'], data['depot'])

    # Create Routing Model.
    routing = pywrapcp.RoutingModel(manager)


    # Create and register a transit callback.
    def time_callback(from_index, to_index):
        """Returns the travel time between the two nodes."""
        # Convert from routing variable Index to time matrix NodeIndex.
        from_node = manager.IndexToNode(from_index)
        to_node = manager.IndexToNode(to_index)
        return data['time_matrix'][from_node][to_node]

    transit_callback_index = routing.RegisterTransitCallback(time_callback)

    # Define cost of each arc.
    routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

    # Add Time Windows constraint.
    time = 'Time'
    routing.AddDimension(
        transit_callback_index,
        30000,  # allow waiting time
        3000,  # maximum time per vehicle
        False,  # Don't force start cumul to zero.
        time)
    time_dimension = routing.GetDimensionOrDie(time)
    # Add time window constraints for each location except depot.
    for location_idx, time_window in enumerate(data['time_windows']):
        if location_idx == 0:
            continue
        index = manager.NodeToIndex(location_idx)
        time_dimension.CumulVar(index).SetRange(time_window[0], time_window[1])
    # Add time window constraints for each vehicle start node.
    for vehicle_id in range(data['num_vehicles']):
        index = routing.Start(vehicle_id)
        time_dimension.CumulVar(index).SetRange(data['time_windows'][0][0],
                                                data['time_windows'][0][1])

    # Instantiate route start and end times to produce feasible times.
    for i in range(data['num_vehicles']):
        routing.AddVariableMinimizedByFinalizer(
            time_dimension.CumulVar(routing.Start(i)))
        routing.AddVariableMinimizedByFinalizer(
            time_dimension.CumulVar(routing.End(i)))
    # Define Transportation Requests.
    for request in data['pickups_deliveries']:
        pickup_index = manager.NodeToIndex(request[0])
        delivery_index = manager.NodeToIndex(request[1])
        routing.AddPickupAndDelivery(pickup_index, delivery_index)
        routing.solver().Add(
            routing.VehicleVar(pickup_index) == routing.VehicleVar(
                delivery_index))
        routing.solver().Add(
            time_dimension.CumulVar(pickup_index) <=
            time_dimension.CumulVar(delivery_index))
    
    
    def demand_callback(from_index):
        """Returns the demand of the node."""
        # Convert from routing variable Index to demands NodeIndex.
        from_node = manager.IndexToNode(from_index)
        return data['demands'][from_node]
    
    demand_callback_index = routing.RegisterUnaryTransitCallback(
        demand_callback)
    routing.AddDimensionWithVehicleCapacity(
        demand_callback_index,
        0,  # null capacity slack
        data['vehicle_capacities'],  # vehicle maximum capacities
        True,  # start cumul to zero
        'Capacity')

    # Setting first solution heuristic.
    search_parameters = pywrapcp.DefaultRoutingSearchParameters()
    search_parameters.first_solution_strategy = (
        routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC)

    # Solve the problem.
    solution = routing.SolveWithParameters(search_parameters)

    # Print solution on console.
    if solution:
        print_solution(data, manager, routing, solution)

    print("Status", routing.status())
if __name__ == '__main__':
    main()

And I am replacing the create_data_model() function with following for 5 nodes case which is working:

def create_data_model():
    """Stores the data for the problem."""
    data = {}
    data['time_matrix'] = [
        [0, 6, 9, 8, 7], 
        [6, 0, 8, 3, 2], 
        [9, 8, 0, 11, 10],
        [8, 3, 11, 0, 1],
        [7, 2, 10, 1, 0],
    ] 
        
    data['time_windows'] = [
        (0, 180),  # depot
        (0, 180),  # 1
        (0, 180),  # 2
        (0, 180),  # 3
        (0, 180),  # 4
 
    ]
    data['pickups_deliveries'] = [
        [1, 3],     #2
        [2, 4],    #4 ripler
            #3      
    ]
    data['demands'] = [0, 2, 4, -2, -4]
    data['vehicle_capacities'] = [2, 7]
    data['num_vehicles'] = 2
    data['depot'] = 0
    return data

Upvotes: 1

Views: 1217

Answers (1)

Mizux
Mizux

Reputation: 9281

My 2 cents,

If you have 16 nodes, they should be in range [0;15] but in your PickupAndDelivery array we can see a 16...

EDIT: seems you have 17 nodes (with the depot)

Upvotes: 1

Related Questions