Reputation: 137
I am new to spark and scala. I have a json array struct as input, similar to the below schema.
root
|-- entity: struct (nullable = true)
| |-- email: string (nullable = true)
| |-- primaryAddresses: array (nullable = true)
| | |-- element: struct (containsNull = true)
| | | |-- postalCode: string (nullable = true)
| | | |-- streetAddress: struct (nullable = true)
| | | | |-- line1: string (nullable = true)
I flattened the array struct to the below sample Dataframe
+-------------+--------------------------------------+--------------------------------------+
|entity.email |entity.primaryAddresses[0].postalCode |entity.primaryAddresses[1].postalCode |....
+-------------+--------------------------------------+--------------------------------------+
|[email protected] | | |
|[email protected] | |12345 |
|[email protected] |12345 | |
|[email protected] |0 |0 |
+-------------+--------------------------------------+--------------------------------------+
My end goal is to calculate presence/absence/zero counts for each of the columns for data quality metrics.But before I calculate the data quality metrics I am looking for an approach to derive one new column for each of the array column elements as below such that
Below is a sample intermediate dataframe that I am trying to achieve with a column derived for each of array elements. The original array elements are dropped.
+-------------+--------------------------------------+
|entity.email |entity.primaryAddresses.postalCode |.....
+-------------+--------------------------------------+
|[email protected] | |
|[email protected] |1 |
|[email protected] |1 |
|[email protected] |0 |
+-------------+--------------------------------------+
The input json records elements are dynamic and can change. To derive columns for array element I build a scala map with a key as column name without array index (example:entity.primaryAddresses.postalCode) and value as list of array elements to run rules on for the specific key. I am looking for an approach to achieve the above intermediate data frame.
One concern is that for certain input files after I flatten the Dataframe , the dataframe column count exceeds 70k+. And since the record count is expected to be in millions I am wondering if instead of flattening the json if I should explode each of elements for better performance.
Appreciate any ideas. Thank you.
Upvotes: 0
Views: 880
Reputation: 10362
Created helper function & You can directly call df.explodeColumns
on DataFrame.
Below code will flatten multi level array & struct type columns.
Use below function to extract columns & then apply your transformations on that.
scala> df.printSchema
root
|-- entity: struct (nullable = false)
| |-- email: string (nullable = false)
| |-- primaryAddresses: array (nullable = false)
| | |-- element: struct (containsNull = false)
| | | |-- postalCode: string (nullable = false)
| | | |-- streetAddress: struct (nullable = false)
| | | | |-- line1: string (nullable = false)
import org.apache.spark.sql.{DataFrame, SparkSession}
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._
import scala.annotation.tailrec
import scala.util.Try
implicit class DFHelpers(df: DataFrame) {
def columns = {
val dfColumns = df.columns.map(_.toLowerCase)
df.schema.fields.flatMap { data =>
data match {
case column if column.dataType.isInstanceOf[StructType] => {
column.dataType.asInstanceOf[StructType].fields.map { field =>
val columnName = column.name
val fieldName = field.name
col(s"${columnName}.${fieldName}").as(s"${columnName}_${fieldName}")
}.toList
}
case column => List(col(s"${column.name}"))
}
}
}
def flatten: DataFrame = {
val empty = df.schema.filter(_.dataType.isInstanceOf[StructType]).isEmpty
empty match {
case false =>
df.select(columns: _*).flatten
case _ => df
}
}
def explodeColumns = {
@tailrec
def columns(cdf: DataFrame):DataFrame = cdf.schema.fields.filter(_.dataType.typeName == "array") match {
case c if !c.isEmpty => columns(c.foldLeft(cdf)((dfa,field) => {
dfa.withColumn(field.name,explode_outer(col(s"${field.name}"))).flatten
}))
case _ => cdf
}
columns(df.flatten)
}
}
scala> df.explodeColumns.printSchema
root
|-- entity_email: string (nullable = false)
|-- entity_primaryAddresses_postalCode: string (nullable = true)
|-- entity_primaryAddresses_streetAddress_line1: string (nullable = true)
Upvotes: 2
Reputation: 2108
You can leverage on a custom user define function that can help you do the data quality metrics.
val postalUdf = udf((postalCode0: Int, postalCode1: Int) => {
//TODO implement you logic here
})
then use is to create a new dataframe column
df
.withColumn("postcalCode", postalUdf(col("postalCode_0"), col("postalCode_1")))
.show()
Upvotes: 1