Reputation: 223
I ran regexp_replace
command on a Pyspark dataframe and after that the datatype of all data changed to String.Why is it so ?
Below is my table before using regex_replace
root
|-- account_id: long (nullable = true)
|-- credit_card_limit: long (nullable = true)
|-- credit_card_number: long (nullable = true)
|-- first_name: string (nullable = true)
|-- last_name: string (nullable = true)
|-- phone_number: long (nullable = true)
|-- amount: long (nullable = true)
|-- date: string (nullable = true)
|-- shop: string (nullable = true)
|-- transaction_code: string (nullable = true)
Schema after applying regexp_replace
root
|-- date_type: date (nullable = true)
|-- c_phone_number: string (nullable = true)
|-- c_account_id: string (nullable = true)
|-- c_credit_card_limit: string (nullable = true)
|-- c_credit_card_number: string (nullable = true)
|-- c_amount: string (nullable = true)
|-- c_full_name: string (nullable = true)
|-- c_transaction_code: string (nullable = true)
|-- c_shop: string (nullable = true)
The code I used:
df=df.withColumn('c_phone_number',regexp_replace("phone_number","[^0-9]","")).drop('phone_number')
df=df.withColumn('c_account_id',regexp_replace("account_id","[^0-9]","")).drop('account_id')
df=df.withColumn('c_credit_card_limit',regexp_replace("credit_card_limit","[^0-9]","")).drop('credit_card_limit')
df=df.withColumn('c_credit_card_number',regexp_replace("credit_card_number","[^0-9]","")).drop('credit_card_number')
df=df.withColumn('c_amount',regexp_replace("amount","[^0-9 ]","")).drop('amount')
df=df.withColumn('c_full_name',regexp_replace("full_name","[^a-zA-Z ]","")).drop('full_name')
df=df.withColumn('c_transaction_code',regexp_replace("transaction_code","[^a-zA-Z]","")).drop('transaction_code')
df=df.withColumn('c_shop',regexp_replace("shop","[^a-zA-Z ]","")).drop('shop')
Why is this happening ? Is there a way to convert this to its original datatype or should I use cast again ?
Upvotes: 1
Views: 468
Reputation: 6338
You may wanted to look at the code from spark git for regexp_replace
-
override def nullSafeEval(s: Any, p: Any, r: Any): Any = {
if (!p.equals(lastRegex)) {
// regex value changed
lastRegex = p.asInstanceOf[UTF8String].clone()
pattern = Pattern.compile(lastRegex.toString)
}
if (!r.equals(lastReplacementInUTF8)) {
// replacement string changed
lastReplacementInUTF8 = r.asInstanceOf[UTF8String].clone()
lastReplacement = lastReplacementInUTF8.toString
}
val m = pattern.matcher(s.toString())
result.delete(0, result.length())
while (m.find) {
m.appendReplacement(result, lastReplacement)
}
m.appendTail(result)
UTF8String.fromString(result.toString)
}
Any
and then call toString()
on ittoString
UTF8String.fromString(result.toString)
ref - spark-git
Upvotes: 1