Reputation: 111
The initial input is an OrderedDict that looks like this:
OrderedDict([(datetime.datetime(2019, 4, 30, 0, 0), 0.0947486624999998),
(datetime.datetime(2019, 5, 31, 0, 0), 0.08259463125856992), (datetime.datetime(2019, 6, 30,
0, 0), 0.003052897793393905), (datetime.datetime(2019, 7, 31, 0, 0), 0.028023122904952125),
(datetime.datetime(2019, 8, 31, 0, 0), 0.07684687634449605), (datetime.datetime(2019, 9, 30,
0, 0), -0.03725794433925611), (datetime.datetime(2019, 10, 31, 0, 0), 0.03144787467960408),
(datetime.datetime(2019, 11, 30, 0, 0), -0.14988101444115354), (datetime.datetime(2019, 12,
31, 0, 0), -0.05752055413222357), (datetime.datetime(2020, 1, 31, 0, 0),
0.11857140628117113), (datetime.datetime(2020, 2, 29, 0, 0), 0.021006728910266892),
(datetime.datetime(2020, 3, 31, 0, 0), -0.14603720278839682), (datetime.datetime(2020, 4,
30, 0, 0), -0.026798450818290687), (datetime.datetime(2020, 5, 31, 0, 0),
0.22529234127142295), (datetime.datetime(2020, 6, 30, 0, 0), 0.01974629608463685)])
Currently, I'm using the code below to pull out the dates to put into one row and put the values into a different row.
from prettytable import PrettyTable
m = output.analyzers.trtnM.get_analysis()
months = list(m.keys())
months_date = [d.strftime('%m-%d-%Y') for d in months]
returnsM = list(m.values())
returnsM_2 = [str(round(num * 100, 2)) + "%" for num in returnsM]
ptM = PrettyTable()
ptM.title = 'Monthly Returns'
ptM.field_names = months_date
ptM.add_row(returnsM_2)
print(ptM)
This looks like:
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Monthly Returns |
+------------+------------+------------+------------+------------+------------+------------+------------+------------+------------+------------+------------+------------+------------+------------+
| 04-30-2019 | 05-31-2019 | 06-30-2019 | 07-31-2019 | 08-31-2019 | 09-30-2019 | 10-31-2019 | 11-30-2019 | 12-31-2019 | 01-31-2020 | 02-29-2020 | 03-31-2020 | 04-30-2020 | 05-31-2020 | 06-30-2020 |
+------------+------------+------------+------------+------------+------------+------------+------------+------------+------------+------------+------------+------------+------------+------------+
| 9.47% | 8.26% | 0.31% | 2.8% | 7.68% | -3.73% | 3.14% | -14.99% | -5.75% | 11.86% | 2.1% | -14.6% | -2.68% | 22.53% | 1.97% |
+------------+------------+------------+------------+------------+------------+------------+------------+------------+------------+------------+------------+------------+------------+------------+
With different date ranges it's becoming a bit cumbersome as one long row, so I'd like to be able to split it out so that there is a row for each year and a column for each month. I need this to be dynamic based on the initial OrderedDict, but unsure how to best approach it.
Upvotes: 0
Views: 193
Reputation: 1191
I guess you mean something like that:
from prettytable import PrettyTable
import calendar
m = output.analyzers.trtnM.get_analysis()
returns = dict()
months = set()
for date, value in m.items():
if date.year not in returns:
returns[date.year] = {}
returns[date.year][date.month] = value
months.add(date.month)
months = list(sorted(months))
ptM = PrettyTable()
ptM.title = 'Monthly Returns'
ptM.field_names = ["Year"] + [calendar.month_name[month] for month in months]
for year in sorted(returns):
values = returns[year]
ptM.add_row([str(year)] + [f"{round(values[month]*100, 2)}%" if month in values else ""
for month in months])
print(ptM)
This outputs with your data
+------+---------+----------+--------+--------+--------+-------+------+--------+-----------+---------+----------+----------+
| Year | January | February | March | April | May | June | July | August | September | October | November | December |
+------+---------+----------+--------+--------+--------+-------+------+--------+-----------+---------+----------+----------+
| 2019 | | | | 9.47% | 8.26% | 0.31% | 2.8% | 7.68% | -3.73% | 3.14% | -14.99% | -5.75% |
| 2020 | 11.86% | 2.1% | -14.6% | -2.68% | 22.53% | 1.97% | | | | | | |
+------+---------+----------+--------+--------+--------+-------+------+--------+-----------+---------+----------+----------+
Upvotes: 1