Reputation: 1521
This is a follow up to a previous post Map partial string from dictionary in Pandas
I modified the mapping dictionary a bit
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randint(0,10,size=(5, 1)), columns=list('A'))
df.insert(0, 'n', ['abcde Germany fffe','aaaa Norway bbbb',
'tttt Sweden','Croatia dfdfdf','Italy sfsd'])
d = {'Germany':0.5, 'Croatia':1.5, 'Italy':1.5, 'Ital':1, 'German':0.9}
df['multiple'] = 1
for k, v in d.items():
df['multiple'] = np.where(df['n'].str.contains(k), v, df['multiple'])
print(df)
Obtained output:
n A multiple
0 abcde Germany fffe 3 0.9
1 aaaa Norway bbbb 7 1.0
2 tttt Sweden 5 1.0
3 Croatia dfdfdf 8 1.5
4 Italy sfsd 3 1.0
Expected:
n A multiple
0 abcde Germany fffe 3 0.5
1 aaaa Norway bbbb 7 1.0
2 tttt Sweden 5 1.0
3 Croatia dfdfdf 8 1.5
4 Italy sfsd 3 1.5
Suggestions on how to obtain the expected output will be really helpful.
Upvotes: 1
Views: 360
Reputation: 75120
Here is one approach(similar to the linked post) which extracts the word in keys of dictionary and then maps the values using series.map
then fillna
with 1
where there is no match:
pat = r'\b(?:{})\b'.format('|'.join(d.keys()))
df['multiple'] = df['n'].str.extract('('+pat+')',expand=False).map(d).fillna(1)
print(df)
n A multiple
0 abcde Germany fffe 5 0.5
1 aaaa Norway bbbb 4 1.0
2 tttt Sweden 1 1.0
3 Croatia dfdfdf 8 1.5
4 Italy sfsd 0 1.5
Upvotes: 1