Reputation: 11192
I have a csv file which looks like below,
20×2 DataFrame
│ Row │ Id │ Date │
│ │ Int64 │ String │
├─────┼───────┼────────────┤
│ 1 │ 1 │ 01-01-2010 │
│ 2 │ 2 │ 02-01-2010 │
│ 3 │ 3 │ 03-01-2010 │
│ 4 │ 4 │ 04-01-2010 │
│ 5 │ 5 │ 05-01-2010 │
│ 6 │ 6 │ 06-01-2010 │
│ 7 │ 7 │ 07-01-2010 │
│ 8 │ 8 │ 08-01-2010 │
│ 9 │ 9 │ 09-01-2010 │
│ 10 │ 10 │ 10-01-2010 │
│ 11 │ 11 │ 11-01-2010 │
│ 12 │ 12 │ 12-01-2010 │
│ 13 │ 13 │ 13-01-2010 │
│ 14 │ 14 │ 14-01-2010 │
│ 15 │ 15 │ 15-01-2010 │
│ 16 │ 16 │ 16-01-2010 │
│ 17 │ 17 │ 17-01-2010 │
│ 18 │ 18 │ 18-01-2010 │
│ 19 │ 19 │ 19-01-2010 │
│ 20 │ 20 │ 20-01-2010 │
after reading the csv file date
columns is in String
type. How to externally convert a string series into Datetime series. In Julia Data Frame docs doesn't talk Anything about TimeSeries.
How to externally convert a series or vector into Datetime format?
Is there anyway I can mention timeseries columns while reading a CSV File?
Upvotes: 6
Views: 4665
Reputation: 31
Here is how I have done it:
First a helper function to convert different string formats.
parse_date(d::AbstractString) = DateTime(d, dateformat"yyyy-mm-dd HH:MM:SS")
parse_date(v::Vector{AbstractString}) = parse_date.(v)
parse_date(v::Vector{String}) = parse_date.(v)
parse_date(v::Vector{String31}) = parse_date(String.(v))
using Pipe, TimeSeries
prices = @pipe CSV.File(filename; header = 1, delim = ",") |>
TimeArray(_; timestamp = :Date, timeparser = parse_date)
Upvotes: 1
Reputation: 69819
When reading-in a CSV file you can specify dateformat
kwarg in CSV.jl:
CSV.File("your_file_name.csv", dateformat="dd-mm-yyyy") |> DataFrame
On the other hand if your data frame is called df
then to convert String
to Date
in your case use:
using Dates
df.Date = Date.(df.Date, "dd-mm-yyyy")
Upvotes: 11