Reputation: 373
I have a df as below, there are some repeated date records for each person, I wish to keep the exactly same sequence/order for the rest of the data, but wish to add one hour for the duplicate date record only.
df = pd.DataFrame({
'name': ['Jim', 'Jim', 'Jim', 'Jim', 'Mike', 'Mike', 'Mike', 'Mike',
'Polo', 'Polo', 'Polo', 'Polo', 'Polo', 'Tom', 'Tom', 'Tom', 'Tom'],
'Item ID': [80, 68, 751, 'Started', 32, 126, 68, 'Started', 105, 68, 251, 76, 'Started', 82, 251, 23, "Started"],
'Date':["2018-02-15", "2018-02-14", "2015-08-17", "2015-08-17",
"2018-09-14", "2018-06-01", "2018-06-01", "2018-05-31",
"2017-06-01", "2017-06-01", "2014-12-01", "2014-11-23", "2013-08-11",
"2017-07-14", "2016-02-16", "2016-02-16", "2015-06-05"],
})
name Item ID Date
0 Jim 80 2018-02-15
1 Jim 68 2018-02-14
2 Jim 751 2015-08-17 # duplicate date for Jim, add one hour here
3 Jim Started 2015-08-17
4 Mike 32 2018-09-14
5 Mike 126 2018-06-01 # duplicate date for Mike, add one hour here
6 Mike 68 2018-06-01
7 Mike Started 2018-05-31
8 Polo 105 2017-06-01 # duplicate date for Polo, add one hour here
9 Polo 68 2017-06-01
10 Polo 251 2014-12-01
11 Polo 76 2014-11-23
12 Polo Started 2013-08-11
13 Tom 82 2017-07-14
14 Tom 251 2016-02-16 # duplicate date for Tom, add one hour here
15 Tom 23 2016-02-16
16 Tom Started 2015-06-05
I wrote some codes but not working well and very unproductive. If anyone had any ideas please help, a great thanks. My expected result:
name Item ID Date
0 Jim 80 2018-02-15
1 Jim 68 2018-02-14
2 Jim 751 2015-08-17 00:01:00 # added
3 Jim Started 2015-08-17
4 Mike 32 2018-09-14
5 Mike 126 2018-06-01 00:01:00 # added
6 Mike 68 2018-06-01
7 Mike Started 2018-05-31
8 Polo 105 2017-06-01 00:01:00 # added
9 Polo 68 2017-06-01
10 Polo 251 2014-12-01
11 Polo 76 2014-11-23
12 Polo Started 2013-08-11
13 Tom 82 2017-07-14
14 Tom 251 2016-02-16 00:01:00 # added
15 Tom 23 2016-02-16
16 Tom Started 2015-06-05
Upvotes: 3
Views: 91
Reputation: 16147
df['Date'] = pd.to_datetime(df['Date'])
df.loc[df.duplicated(subset=['name','Date'], keep='last'), 'Date'] = df['Date'] + pd.DateOffset(hours=1)
Output
name Item ID Date
0 Jim 80 2018-02-15 00:00:00
1 Jim 68 2018-02-14 00:00:00
2 Jim 751 2015-08-17 01:00:00
3 Jim Started 2015-08-17 00:00:00
4 Mike 32 2018-09-14 00:00:00
5 Mike 126 2018-06-01 01:00:00
6 Mike 68 2018-06-01 00:00:00
7 Mike Started 2018-05-31 00:00:00
8 Polo 105 2017-06-01 01:00:00
9 Polo 68 2017-06-01 00:00:00
10 Polo 251 2014-12-01 00:00:00
11 Polo 76 2014-11-23 00:00:00
12 Polo Started 2013-08-11 00:00:00
13 Tom 82 2017-07-14 00:00:00
14 Tom 251 2016-02-16 01:00:00
15 Tom 23 2016-02-16 00:00:00
16 Tom Started 2015-06-05 00:00:00
Upvotes: 2
Reputation: 323306
We can do duplicated
with reversed order by iloc
, then add the hour to original Date
df.Date=pd.to_datetime(df.Date)+pd.to_timedelta(df.iloc[::-1].duplicated(['name','Date']).astype(int),unit='hour')
df
name Item ID Date
0 Jim 80 2018-02-15 00:00:00
1 Jim 68 2018-02-14 00:00:00
2 Jim 751 2015-08-17 01:00:00
3 Jim Started 2015-08-17 00:00:00
4 Mike 32 2018-09-14 00:00:00
5 Mike 126 2018-06-01 01:00:00
6 Mike 68 2018-06-01 00:00:00
7 Mike Started 2018-05-31 00:00:00
8 Polo 105 2017-06-01 01:00:00
9 Polo 68 2017-06-01 00:00:00
10 Polo 251 2014-12-01 00:00:00
11 Polo 76 2014-11-23 00:00:00
12 Polo Started 2013-08-11 00:00:00
13 Tom 82 2017-07-14 00:00:00
14 Tom 251 2016-02-16 01:00:00
15 Tom 23 2016-02-16 00:00:00
16 Tom Started 2015-06-05 00:00:00
Upvotes: 4