Reputation: 1942
I have defined a custom loss in Keras for the function:
(y - yhat)^2 + (y * yhat)
.
def customLoss(y_true, y_pred, sample_weight=None):
y_true = K.cast(y_true, 'float32')
y_pred = K.cast(y_pred, 'float32')
loss = K.square(y_true - y_pred) + K.prod(y_true, y_pred)
loss = loss * K.cast(sample_weights, 'float32')
return loss
When I run model.fit
, it fails on TypeError:
earlystopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss',
mode='min', verbose=1, patience=20)
history = model.fit(Xtrain, ytrain_raw,
validation_data=(Xval, yval_raw), batch_size=128,
epochs=500, verbose=1, callbacks=[earlystopping],
sample_weight=sample_weights)
Error:
TypeError: in user code:
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:571 train_function *
outputs = self.distribute_strategy.run(
/usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:951 run **
return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:2290 call_for_each_replica
return self._call_for_each_replica(fn, args, kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:2649 _call_for_each_replica
return fn(*args, **kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:533 train_step **
y, y_pred, sample_weight, regularization_losses=self.losses)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/compile_utils.py:205 __call__
loss_value = loss_obj(y_t, y_p, sample_weight=sw)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/losses.py:143 __call__
losses = self.call(y_true, y_pred)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/losses.py:246 call
return self.fn(y_true, y_pred, **self._fn_kwargs)
<ipython-input-477-99f75f332877>:4 customLoss
loss = K.square(y_true - y_pred) + K.prod(y_true, y_pred)
/usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:1716 prod
return tf.reduce_prod(x, axis, keepdims)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/util/dispatch.py:180 wrapper
return target(*args, **kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/math_ops.py:2196 reduce_prod
name=name))
/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/gen_math_ops.py:6642 prod
name=name)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/op_def_library.py:578 _apply_op_helper
param_name=input_name)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/op_def_library.py:61 _SatisfiesTypeConstraint
", ".join(dtypes.as_dtype(x).name for x in allowed_list)))
TypeError: Value passed to parameter 'reduction_indices' has DataType float32 not in list of allowed values: int32, int64
However, if I remove the K.prod(y_true, y_pred)
part, the code runs without any hitches.
def customLoss(y_true, y_pred, sample_weight=None):
y_true = K.cast(y_true, 'float32')
y_pred = K.cast(y_pred, 'float32')
loss = K.square(y_true - y_pred) #+ K.prod(y_true, y_pred)
loss = loss * K.cast(sample_weights, 'float32')
return loss
What could be wrong???
Upvotes: 2
Views: 762
Reputation: 408
I believe the error arises from the second argument in your call for K.prod()
. This function takes a single tensor x
but you have specified two tensors y_true
and y_pred
.
The error itself arises because the second argument of K.prod()
refers to an axis, which must be an integer, not a float.
It sounds like you may want to use tf.keras.layers.multiply()
or tf.keras.layers.dot()
.
Upvotes: 1