Reputation: 520
Trying to understand how the r-squared (and also explained variance) metrics can be negative (thus indicating non-existant forecasting power) when at the same time the correlation factor between prediction and truth (as well as slope in a linear-regression (regressing truth on prediction)) are positive
Upvotes: 1
Views: 1584
Reputation: 421
R Squared can be negative in a rare scenario.
R squared = 1 – (SSR/SST)
Here, SST stands for Sum of Squared Total which is nothing but how much does the predicted points get varies from the mean of the target variable. Mean is nothing but a regression line here.
SST = Sum (Square (Each data point- Mean of the target variable))
For example,
If we want to build a regression model to predict height of a student with weight as the independent variable then a possible prediction without much effort is to calculate the mean height of all current students and consider it as the prediction.
In the above diagram, red line is the regression line which is nothing but the mean of all heights. This mean calculated without much effort and can be considered as one of the worst method of prediction with poor accuracy. In the diagram itself we can see that the prediction is nowhere near to the original data points. Now come to SSR,
SSR stands for Sum of Squared Residuals. This residual is calculated from the model which we build from our mathematical approach (Linear regression, Bayesian regression, Polynomial regression or any other approach). If we use a sophisticated approach rather than using a naive approach like mean then our accuracy will obviously increase.
SSR = Sum (Square (Each data point - Each corresponding data point in the regression line))
In the above diagram, let's consider that the blue line indicates a sophisticated model with large mathematical analysis. We can see that it has obviously higher accuracy than the red line.
Now come to the formula,
R Squared = 1- (SSR/SST)
Here,
This is a generic case but this cannot be applied in many cases where multiple independent variables are present. In the example, we had only one independent variable and one target variable but in real case, we will have 100's of independent variables for a single dependent variable. The actual problem is that, out of 100's of independent variables-
So, RSquared is calculated on an assumption that the average line of the target which is perpendicular line of y axis is the worst fit a model can have at a maximum riskiest case. SST is the squared difference between this average line and original data points. Similarly, SSR is the squared difference between the predicted data points (by the model plane) and original data points.
SSR/SST gives a ratio how SSR is worst with respect to SST. If your model can somewhat build a plane which is a comparatively good than the worst, then in 99% cases SSR<SST. It eventually makes R squared as positive if you substitute it in the equation.
But what if SSR>SST ? This means that your regression plane is worse than the mean line (SST). In this case, R squared will be obviously negative. But it happens only at 1% of cases or smaller.
Answer was originally written in quora by me -
Upvotes: -1