Reputation: 25
I'm working on a Linear Regression problem with Pytorch. The dataset I'm using is the Housing Prices from Kaggle. While training the model I see the loss is not reducing. It shows an erratic pattern. This is the Loss I'm getting after 100 epochs:
Epoch [10/100], Loss: 222273830912.0000
Epoch [20/100], Loss: 348813688832.0000
Epoch [30/100], Loss: 85658296320.0000
Epoch [40/100], Loss: 290305572864.0000
Epoch [50/100], Loss: 59399933952.0000
Epoch [60/100], Loss: 80360054784.0000
Epoch [70/100], Loss: 90352918528.0000
Epoch [80/100], Loss: 534457679872.0000
Epoch [90/100], Loss: 256064503808.0000
Epoch [100/100], Loss: 102400483328.0000
This is the code:
import torch
import numpy as np
from torch.utils.data import TensorDataset
import torch.nn as nn
from torch.utils.data import DataLoader
import torch.nn.functional as F
inputs = normalized_X
targets = np.array(train_y)
# Tensors
inputs = torch.from_numpy(inputs)
targets = torch.from_numpy(targets)
targets = targets.view(-1, 1)
train_ds = TensorDataset(inputs, targets.squeeze())
batch_size = 5
train_dl = DataLoader(train_ds, batch_size, shuffle=True)
model = nn.Linear(10, 1)
# Define Loss func
loss_fn = F.mse_loss
# Optimizer
opt = torch.optim.SGD(model.parameters(), lr = 1e-1)
num_epochs = 100
model.train()
for epoch in range(num_epochs):
# Train with batches of data
for xb, yb in train_dl:
# 1. Generate predictions
pred = model(xb.float())
# 2. Calculate loss
yb = yb.view(yb.size(0), -1)
loss = loss_fn(pred, yb.float())
# 3. Compute gradients
loss.backward()
# 4. Update parameters using gradients
opt.step()
# 5. Reset the gradients to zero
opt.zero_grad()
if (epoch+1) % 10 == 0:
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch +
1, num_epochs,
loss.item()))
Upvotes: 1
Views: 1089
Reputation: 76
My previous comment is inavalid and I deleted it. Your sample code works as intendeed. You want to predict random variable from independent random variable. There is no pattern and thats why it doesn't converge.
Upvotes: 0
Reputation: 316
I have run the code you give and I get this error :
p.py:38: UserWarning: Using a target size (torch.Size([50])) that is
different to the input size (torch.Size([50, 1])). This will likely lead
to incorrect results due to broadcasting. Please ensure they have the same size.
Your problem is due to the difference of dimension between pred
and yb
.
this code show how to resolve it
import torch
import numpy as np
from torch.utils.data import TensorDataset
import torch.nn as nn
from torch.utils.data import DataLoader
import torch.nn.functional as F
inputs = np.random.rand(50, 10)
targets = np.random.randint(0, 2, 50)
# Tensors
inputs = torch.from_numpy(inputs)
targets = torch.from_numpy(targets)
train_ds = TensorDataset(inputs, targets.squeeze())
batch_size = 100
train_dl = DataLoader(train_ds, batch_size, shuffle=True)
model = nn.Linear(10, 1)
# Define Loss func
loss_fn = F.mse_loss
# Optimizer
opt = torch.optim.SGD(model.parameters(), lr = 1e-1)
num_epochs = 100
model.train()
for epoch in range(num_epochs):
# Train with batches of data
for xb, yb in train_dl:
# 1. Generate predictions
pred = model(xb.float())
# 2. Calculate loss
yb = yb.view(yb.size(0), -1)
loss = loss_fn(pred, yb.float())
# 3. Compute gradients
loss.backward()
# 4. Update parameters using gradients
opt.step()
# 5. Reset the gradients to zero
opt.zero_grad()
if (epoch+1) % 10 == 0:
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch +
1, num_epochs,
loss.item()))
this discusion show to you in the detail https://discuss.pytorch.org/t/target-size-torch-size-10-must-be-the-same-as-input-size-torch-size-2/72354/6
Upvotes: 1