Reputation: 513
Is there a numpy solution that would allow you to initialize an array based on the following conditions?
Essentially this shows all the combinations of 4 values you can add to achieve the wanted sum (8) at a step size of 2.
My experiments fail when I set the axis 1 dimension to over 6 and the sum to over 100. There has to be a better way to do this than what I've been trying.
array([[0, 0, 0, 8],
[0, 0, 2, 6],
[0, 0, 4, 4],
[0, 0, 6, 2],
[0, 0, 8, 0],
[0, 2, 0, 6],
[0, 2, 2, 4],
[0, 2, 4, 2],
[0, 2, 6, 0],
[0, 4, 0, 4],
[0, 4, 2, 2],
[0, 4, 4, 0],
[0, 6, 0, 2],
[0, 6, 2, 0],
[0, 8, 0, 0],
[2, 0, 0, 6],
[2, 0, 2, 4],
[2, 0, 4, 2],
[2, 0, 6, 0],
[2, 2, 0, 4],
[2, 2, 2, 2],
[2, 2, 4, 0],
[2, 4, 0, 2],
[2, 4, 2, 0],
[2, 6, 0, 0],
[4, 0, 0, 4],
[4, 0, 2, 2],
[4, 0, 4, 0],
[4, 2, 0, 2],
[4, 2, 2, 0],
[4, 4, 0, 0],
[6, 0, 0, 2],
[6, 0, 2, 0],
[6, 2, 0, 0],
[8, 0, 0, 0]], dtype=int64)
Upvotes: 1
Views: 269
Reputation: 1251
Here is a small code that will enable you to loop over the desired combinations. It takes 3 parameter:
itsize
: Number of elements.itsum
: Sum of values.itstep
: Step size.It may be necessary to optimize it if the computations you do in the FOR loop are light. I loop over more combinations than necessary (all the i,j,k,l
that take values in 0,itstep,2*itstep,...,itsum
) and keep only those verifying the condition that all sum up to itsum
. The big size array is not computed and the rows are computed on-the-fly when iterating so you will not have the memory troubles:
class Combinations:
def __init__(self, itsize, itsum, itstep):
assert(itsum % itstep==0) # Sum is a multiple of step
assert(itsum >= itstep) # Sum bigger or equal than step
assert(itsize > 0) # Number of elements >0
self.itsize = itsize # Number of elements
self.itsum = itsum # Sum parameter
self.itstep = itstep # Step parameter
self.cvalue = None # Value of the iterator
def __iter__(self):
self.itvalue = None
return self
def __next__(self):
if self.itvalue is None: # Initialization of the iterator
self.itvalue = [0]*(self.itsize)
elif self.itvalue[0] == self.itsum: # We reached all combinations the iterator is restarted
self.itvalue = None
return None
while True: # Find the next iterator value
for i in range(self.itsize-1,-1,-1):
if self.itvalue[i]<self.itsum:
self.itvalue[i] += self.itstep
break
else:
self.itvalue[i] = 0
if sum(self.itvalue) == self.itsum:
break
return self.itvalue # Return iterator value
myiter = iter(Combinations(4,8,2))
for val in myiter:
if val is None:
break
print(val)
Output:
% python3 script.py
[0, 0, 0, 8]
[0, 0, 2, 6]
[0, 0, 4, 4]
[0, 0, 6, 2]
[0, 0, 8, 0]
[0, 2, 0, 6]
[0, 2, 2, 4]
[0, 2, 4, 2]
[0, 2, 6, 0]
[0, 4, 0, 4]
[0, 4, 2, 2]
[0, 4, 4, 0]
[0, 6, 0, 2]
[0, 6, 2, 0]
[0, 8, 0, 0]
[2, 0, 0, 6]
[2, 0, 2, 4]
[2, 0, 4, 2]
[2, 0, 6, 0]
[2, 2, 0, 4]
[2, 2, 2, 2]
[2, 2, 4, 0]
[2, 4, 0, 2]
[2, 4, 2, 0]
[2, 6, 0, 0]
[4, 0, 0, 4]
[4, 0, 2, 2]
[4, 0, 4, 0]
[4, 2, 0, 2]
[4, 2, 2, 0]
[4, 4, 0, 0]
[6, 0, 0, 2]
[6, 0, 2, 0]
[6, 2, 0, 0]
[8, 0, 0, 0]
Upvotes: 1
Reputation: 1
I tried this out and also found that it slowed down significantly at that size. I think part of the problem is that the output array gets pretty large at that point. I'm not 100% sure my code is right, but the plot shows how the array size grows with condition 2 (sum of values in each row). I didn't do 100, but it looks like it would be about 4,000,000 rows
Upvotes: 0