Reputation: 1949
Using an example from another post, I'm adding a color bar to a scatter plot. The idea is that both dot hue, and colorbar hue, should conform to the maximum and minimum possible, so that the colorbar can reflect the range of values in the hue:
x= [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200]
y= [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200]
z= [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 255]
df = pd.DataFrame(list(zip(x, y, z)), columns =['x', 'y', 'z'])
colormap=matplotlib.cm.viridis
#A continuous color bar needs to be added independently
norm = plt.Normalize(df.z.min(), df.z.max())
sm = plt.cm.ScalarMappable(cmap=colormap, norm=norm)
sm.set_array([])
fig = plt.figure(figsize = (10,8), dpi=300)
ax = fig.add_subplot(1,1,1)
sb.scatterplot(x="x", y="y",
hue="z",
hue_norm=(0,255),
data=df,
palette=colormap,
ax=ax
)
ax.legend(bbox_to_anchor=(0, 1), loc=2, borderaxespad=0., title='hue from sb.scatterplot')
ax.figure.colorbar(sm).set_label('hue from sm')
plt.xlim(0,255)
plt.ylim(0,255)
plt.show()
Note how the hue from the scatterplot, even with hue_norm
, ranges up to 300. In turn, the hue from the colorbar
ranges from 0
to 255
. From experimenting with values in hue_norm
, it seems that matplotlib always rounds it off so that you have a "good" (even?) number of intervals.
My questions are:
colorbar
?Upvotes: 0
Views: 3152
Reputation: 40667
Do you really need to use seaborn's scatterplot()
. Using a numerical hue
is always quite messy.
The following code is much simpler and yields an unambiguous output
fig, ax = plt.subplots()
g = ax.scatter(df['x'],df['y'], c=df['z'], cmap=colormap)
fig.colorbar(g)
Upvotes: 2