Reputation: 1825
I want to do group cols some aggregations operations like count
, count_distinct
or nunique
.
For examples,
# the samples values in `date` column are all unique
df.show(7)
+--------------------+---------------------------------+-------------------+---------+
| category| tags| datetime| date|
+--------------------+---------------------------------+-------------------+---------+
| null| ,industry,display,Merchants|2018-01-08 14:30:32| 20200704|
| social,smart| smart,swallow,game,Experience|2019-06-17 04:34:51| 20200705|
| ,beauty,social| social,picture,social|2017-08-19 09:01:37| 20200706|
| default| default,game,us,adventure|2019-10-02 14:18:56| 20200707|
|financial management|financial management,loan,product|2018-07-17 02:07:39| 20200708|
| system| system,font,application,setting|2015-07-18 00:45:57| 20200709|
| null| ,system,profile,optimization|2018-09-07 19:59:03| 20200710|
df.printSchema()
root
|-- category: string (nullable = true)
|-- tags: string (nullable = true)
|-- datetime: string (nullable = true)
|-- date: string (nullable = true)
# I want to do some group aggregations by PySpark like follows in pandas
group_date_tags_cnt_df = df.groupby('date')['tags'].count()
group_date_tags_nunique_df = df.groupby('date')['tags'].nunique()
group_date_category_cnt_df = df.groupby('date')['category'].count()
group_date_category_nunique_df = df.groupby('date')['category'].nunique()
# expected output here
# AND all results should ignore ',' in the splitted result and `null` value in aggregations operations
group_date_tags_cnt_df.show(4)
+---------+---------+
| date| count|
+---------+---------+
| 20200704| 3|
| 20200705| 4|
| 20200706| 3|
| 20200707| 4|
group_date_tags_nunique_df.show(4)
+---------+---------------------------------+
| date| count(DISTINCT tag)|
+---------+---------------------------------+
| 20200704| 3|
| 20200705| 4|
| 20200706| 3|
| 20200707| 4|
# It should ignore `null` here
group_date_category_cnt_df.show(4)
+---------+---------+
| date| count|
+---------+---------+
| 20200704| 0|
| 20200705| 2|
| 20200706| 2|
| 20200707| 1|
group_date_category_nunique_df.show(4)
+---------+----------------------------+
| date| count(DISTINCT category)|
+---------+----------------------------+
| 20200704| 1|
| 20200705| 2|
| 20200706| 2|
| 20200707| 1|
But the tags
and category
columns are string
type here.
So I think I should do split
way first and do group aggregations operations based on.
But I am a little awkward to implement it.
So could anyone help me?
Upvotes: 0
Views: 102
Reputation: 2072
Pyspark code for which solves your problem, I have taken the 3 dates data 20200702, 20200704, 20200705
from pyspark.sql import Row
from pyspark.sql.functions import *
drow = Row("category","tags","datetime","date")
data = [drow("", ",industry,display,Merchants","2018-01-08 14:30:32","20200704"),drow("social,smart","smart,swallow,game,Experience","2019-06-17 04:34:51","20200702"),drow(",beauty,social", "social,picture,social", "2017-08-19 09:01:37", "20200705")]
df = spark.createDataFrame(data)
final_df=df.withColumn("category", split(df['category'], ",")).withColumn("tags", split(df['tags'], ",")).select('datetime', 'date', 'tags', explode(when(col("category").isNotNull(), col("category")).otherwise(array(lit("").cast("string")))).alias("category")).select('datetime', 'date', 'category', explode(when(col("tags").isNotNull(), col("tags")).otherwise(array(lit("").cast("string")))).alias("tags")).alias("tags")
final_df.show()
'''
+-------------------+--------+--------+----------+
| datetime| date|category| tags|
+-------------------+--------+--------+----------+
|2018-01-08 14:30:32|20200704| | |
|2018-01-08 14:30:32|20200704| | industry|
|2018-01-08 14:30:32|20200704| | display|
|2018-01-08 14:30:32|20200704| | Merchants|
|2019-06-17 04:34:51|20200702| social| smart|
|2019-06-17 04:34:51|20200702| social| swallow|
|2019-06-17 04:34:51|20200702| social| game|
|2019-06-17 04:34:51|20200702| social|Experience|
|2019-06-17 04:34:51|20200702| smart| smart|
|2019-06-17 04:34:51|20200702| smart| swallow|
|2019-06-17 04:34:51|20200702| smart| game|
|2019-06-17 04:34:51|20200702| smart|Experience|
|2017-08-19 09:01:37|20200705| | social|
|2017-08-19 09:01:37|20200705| | picture|
|2017-08-19 09:01:37|20200705| | social|
|2017-08-19 09:01:37|20200705| beauty| social|
|2017-08-19 09:01:37|20200705| beauty| picture|
|2017-08-19 09:01:37|20200705| beauty| social|
|2017-08-19 09:01:37|20200705| social| social|
|2017-08-19 09:01:37|20200705| social| picture|
+-------------------+--------+--------+----------+
only showing top 20 rows'''
final_df.groupBy('date','tags').count().show()
'''
+--------+----------+-----+
| date| tags|count|
+--------+----------+-----+
|20200702| smart| 2|
|20200705| picture| 3|
|20200702| swallow| 2|
|20200704| industry| 1|
|20200704| display| 1|
|20200702| game| 2|
|20200704| | 1|
|20200704| Merchants| 1|
|20200702|Experience| 2|
|20200705| social| 6|
+--------+----------+-----+
'''
final_df.groupBy('date','category').count().show()
'''
+--------+--------+-----+
| date|category|count|
+--------+--------+-----+
|20200702| smart| 4|
|20200702| social| 4|
|20200705| | 3|
|20200705| beauty| 3|
|20200704| | 4|
|20200705| social| 3|
+--------+--------+-----+
'''
Upvotes: 1
Reputation: 1214
case class d(
category: Option[String],
tags: String,
datetime: String,
date: String
)
val sourceDF = Seq(
d(None, ",industry,display,Merchants", "2018-01-08 14:30:32", "20200704"),
d(Some("social,smart"), "smart,swallow,game,Experience", "2019-06-17 04:34:51", "20200704"),
d(Some(",beauty,social"), "social,picture,social", "2017-08-19 09:01:37", "20200704")
).toDF("category", "tags", "datetime", "date")
val df1 = sourceDF.withColumn("category", split('category, ","))
.withColumn("tags", split('tags, ","))
val df2 = df1.select('datetime, 'date, 'tags,
explode(
when(col("category").isNotNull, col("category"))
.otherwise(array(lit(null).cast("string")))).alias("category")
)
val df3 = df2.select('category, 'datetime, 'date,
explode(
when(col("tags").isNotNull, col("tags"))
.otherwise(array(lit(null).cast("string")))).alias("tags")
)
val resDF = df3.select('category, 'tags, 'datetime, 'date)
resDF.show
// +--------+----------+-------------------+--------+
// |category| tags| datetime| date|
// +--------+----------+-------------------+--------+
// | null| |2018-01-08 14:30:32|20200704|
// | null| industry|2018-01-08 14:30:32|20200704|
// | null| display|2018-01-08 14:30:32|20200704|
// | null| Merchants|2018-01-08 14:30:32|20200704|
// | social| smart|2019-06-17 04:34:51|20200704|
// | social| swallow|2019-06-17 04:34:51|20200704|
// | social| game|2019-06-17 04:34:51|20200704|
// | social|Experience|2019-06-17 04:34:51|20200704|
// | smart| smart|2019-06-17 04:34:51|20200704|
// | smart| swallow|2019-06-17 04:34:51|20200704|
// | smart| game|2019-06-17 04:34:51|20200704|
// | smart|Experience|2019-06-17 04:34:51|20200704|
// | | social|2017-08-19 09:01:37|20200704|
// | | picture|2017-08-19 09:01:37|20200704|
// | | social|2017-08-19 09:01:37|20200704|
// | beauty| social|2017-08-19 09:01:37|20200704|
// | beauty| picture|2017-08-19 09:01:37|20200704|
// | beauty| social|2017-08-19 09:01:37|20200704|
// | social| social|2017-08-19 09:01:37|20200704|
// | social| picture|2017-08-19 09:01:37|20200704|
// +--------+----------+-------------------+--------+
val group1DF = resDF.groupBy('date, 'category).count()
group1DF.show
// +--------+--------+-----+
// | date|category|count|
// +--------+--------+-----+
// |20200704| social| 7|
// |20200704| | 3|
// |20200704| smart| 4|
// |20200704| beauty| 3|
// |20200704| null| 4|
// +--------+--------+-----+
val group2DF = resDF.groupBy('datetime, 'category).count()
group2DF.show
// +-------------------+--------+-----+
// | datetime|category|count|
// +-------------------+--------+-----+
// |2017-08-19 09:01:37| social| 3|
// |2017-08-19 09:01:37| beauty| 3|
// |2019-06-17 04:34:51| smart| 4|
// |2019-06-17 04:34:51| social| 4|
// |2018-01-08 14:30:32| null| 4|
// |2017-08-19 09:01:37| | 3|
// +-------------------+--------+-----+
Upvotes: 1