Reputation: 555
I'm trying to convert a grouped timeindex dataframe, so each index is a new column and the columns have the data that used to correspond to each index, how can I do this? this is the example:
data = {'field1':['a','a','c','a','b','c','a','b','c','a','b','c','c'],
'field2':[1,5,12,10,8,4,33,9,1,33,9,1,1],
}
df = pd.DataFrame(data)
df = pd.DataFrame(data, index =['2020-01-01 06:00:00-05:00', '2020-01-01 06:20:00-05:00', '2020-01-01 06:28:00-05:00',
'2020-01-01 06:25:00-05:00', '2020-01-01 07:00:00-05:00', '2020-01-01 07:09:00-05:00',
'2020-01-01 07:15:00-05:00','2020-01-01 07:48:00-05:00', '2020-01-01 06:20:00-05:00',
'2020-01-01 08:33:00-05:00','2020-01-01 08:38:00-05:00','2020-01-01 06:20:00-05:00',
'2020-01-01 08:45:00-05:00'])
df.index = pd.to_datetime(df.index)
df=df.groupby([pd.Grouper(freq='1H'), 'field1']).count()
and I want to convert it in something like this:
Upvotes: 1
Views: 35
Reputation: 26676
You were almost there.Just .unstack()
AND transpose
the resulting dataframe
df=df.groupby([pd.Grouper(freq='1H'), 'field1']).count().unstack()\
.T.reset_index().drop(columns='level_0')
field1 2020-01-01 06:00:00-05:00 2020-01-01 07:00:00-05:00 \
0 a 3.0 1.0
1 b NaN 2.0
2 c 3.0 1.0
2020-01-01 08:00:00-05:00
0 1.0
1 1.0
2 1.0
Upvotes: 1