Reputation: 21
Background: The C++ inline keyword does not determine if a function should be inlined.
Instead, inline permits you to provide multiple definitions of a single function or variable, so long as each definition occurs in a different translation unit.
Basically, this allows definitions of global variables and functions in header files.
Are there some examples of why I might want to write a definition in a header file?
I've heard that there might be templating examples where it's impossible to write the definition in a separate cpp file.
I've heard other claims about performance. But is that really true? Since, to my knowledge, the use of the inline keyword doesn't guarantee that the function call is inlined (and vice versa).
I have a sense that this feature is probably primarily used by library writers trying to write wacky and highly optimized implementations. But are there some examples?
Upvotes: 2
Views: 127
Reputation: 96043
In short:
You're writing a library and you want it to be header-only, to make its use more convenient.
Even if it's not a library, in some cases you may want to keep some of the definitions in a header to make it easier to maintain (whether or not this makes things easier is subjective).
to my knowledge, the use of the inline keyword doesn't guarantee that the function call is inlined
Yes, defining it in a header (as inline
) doesn't guarantee inlining. But if you don't define it in a header, it will never be inlined (unless you're using link-time optimizations). So:
You want the compiler to be able to inline the functions, if it decides to.
Also it may the compiler more knowledge about a function:
maybe it never throws, but is not marked noexcept
;
maybe several consecutive calls can be merged into one (there's no side effects, etc), but __attribute__((const))
is missing;
maybe it never returns, but [[noreturn]]
is missing;
...
there might be templating examples where it's impossible to write the definition in a separate cpp file.
That's true for most templates. They automatically behave as if they were inline
, so you don't need to specify it explicitly. See Why can templates only be implemented in the header file? for details.
Upvotes: 0
Reputation: 75688
It's actually simple: you need inline when you want to write a definition (of a function or variable (since c++17)) in a header. Otherwise you would violate odr as soon as your header is included in more than 1 tu. That's it. That's all there is to it.
Of note is that some entities are implicitly declared inline like:
Now the question becomes why and when would someone want to write definitions in the header instead of separating declarations in headers and definitions in source code files. There are advantages and disadvantages to this approach. Here are some to consider:
Having the definition in a source file means that the code of the function is baked into the tu binary. It cannot be inlined at the calling site outside of the tu that defines it. Having it in a header means that the compiler can inline it everywhere it sees fit. Or it can generate different code for the function depending on the context where it is called. The same can be achieved with lto within an executable or library, but for libraries the only option for enabling this optimization is having the definitions in the header.
Besides enabling more optimizations in a library, having a header only library (when it's possible) means an easier way to distribute that library. All the user has to do is download the headers folder and add it to the include path of his/her project. In the case of non header only library things become more complicated. Because you can't mix and match binaries compiled by different compiler and even by the same compiler but with different flags. So you either have to distribute your library with the full source code along with a build tool or have the library compiled in many formats (cpu architecture/OS/compiler/compiler flags combinations)
Having to write the code once is considered by some (me included) an advantage: both from code documentation perspective and from a maintenance perspective. Others consider separating declaration from definitions is better. One argument is that it achieves separation of interface vs implementation but that is just not the case: in a header you need to have private member declarations even if those aren't part of the interface.
Having all the code in header means duplicating it in every tu. This is a real problem when it comes to compilation time. Heavy header C++ projects are notorious for slow compilation times. It also means that a modification of a function definition would trigger the recompilation of all the tu that include it, as opposed to just 1 tu in the case of definition in source code. Precompiled headers try to solve this problem but the solutions are not portable and have problems of their own.
Upvotes: 2
Reputation: 40842
If the same function definition appears in multiple compilation units then it needs to be inline
otherwise you get a linking error.
You need the inline
keyword e.g. for function templates if you want to make them available using a header because then their definition also has to be in the header.
The below statement might be a bit oversimplified because compilers and linkers are really complex nowadays, but to get a basic idea it is still valid.
A cpp file and the headers included by that cpp file form a compilation unit and each compilation unit is compiled individually. Within that compilation unit, the compiler can do many optimizations like potentially inlining any function call (no matter if it is a member or a free function) as long as the code still behaves according to the specification.
So if you place the function definition in the header you allow the compiler to know the code of that function and potentially do more optimizations.
If the definition is in another compilation unit the compiler can't do much and optimizations then can only be done at linking time. Link time optimizations are also possible and are indeed also done. And while link-time optimizations became better they potentially can't do as much as the compiler can do.
Header only libraries have the big advantage that you do not need to provide project files with them, the one how wants to use that library just copies the headers to their projects and includes them.
Upvotes: 1