Reputation: 41
I have a script, which is using for recoloring room walls based on color similarity. But I need to recolor a wall based on edge detection.
import cv2
import numpy as np
import sys
from PIL import Image
import numpy as np
from hex_to_rgb import color
def recolor(file_path, celor, lower_color, upper_color):
img = cv2.imread(file_path)
res = img.copy()
rgb = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
r2, g2, b2 = color(celor)
mask = cv2.inRange(rgb, lower_color, upper_color)
mask = mask/255
mask = mask.astype(np.bool)
res[:,:,:3][mask] = [b2, g2, r2] # opencv uses BGR
im_rgb = cv2.cvtColor(res, cv2.COLOR_BGR2RGB)
return im_rgb
file_path --> image
celor --> color, which you want to recolor
lower_color --> lower values of RGB
upper_color --> upper values of RGB
Upvotes: 0
Views: 1305
Reputation: 1420
I am using Sobel edge detection to solve this problem. I tried with Canny edge detection also but it didn't give good results.
After edge detection, I applied the threshold to the image and found contours in the image. The problem here is that I am coloring the contour with the maximum area in this case. You will have to figure out a way to choose the contour you want to color.
img = cv2.imread("colourWall.jpg")
cImg = img.copy()
img = cv2.blur(img, (5, 5))
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
scale = 1
delta = 0
ddepth = cv.CV_16S
grad_x = cv.Sobel(gray, ddepth, 1, 0, ksize=3, scale=scale, delta=delta, borderType=cv.BORDER_DEFAULT)
grad_y = cv.Sobel(gray, ddepth, 0, 1, ksize=3, scale=scale, delta=delta, borderType=cv.BORDER_DEFAULT)
abs_grad_x = cv.convertScaleAbs(grad_x)
abs_grad_y = cv.convertScaleAbs(grad_y)
grad = cv.addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0)
ret, thresh = cv2.threshold(grad, 10, 255, cv2.THRESH_BINARY_INV)
c, h = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
areas = [cv2.contourArea(c1) for c1 in c]
maxAreaIndex = areas.index(max(areas))
cv2.drawContours(cImg, c, maxAreaIndex, (255, 0, 0), -1)
plt.imshow(cImg)
plt.show()
Result:
Upvotes: 1