Reputation: 17
I want to fit tslm model to each time series group. I am following example from here but instead of fitting ets model, I would like to fit tslm.
I adjusted the code so it looks like this:
library(tidyverse)
library(timetk)
library(sweep)
library(forecast)
monthly_qty_by_cat2 <-
bike_sales %>%
mutate(order.month = as_date(as.yearmon(order.date))) %>%
group_by(category.secondary, order.month) %>%
summarise(total.qty = sum(quantity)) %>%
mutate(trendx = row_number())
monthly_qty_by_cat2_nest <-
monthly_qty_by_cat2 %>%
group_by(category.secondary) %>%
nest() %>%
mutate(data.ts = map(.x = data,
.f = tk_ts,
select = -order.month,
start = 2011,
freq = 12)) %>%
mutate(fit.ts = map(data.ts, ~tslm(total.qty ~ season, data=.x))) %>%
mutate(fcast.ts = map(fit.ts, forecast))
and it works, BUT when I change
mutate(fit.ts = map(data.ts, ~tslm(total.qty ~ season, data=.x)))
to
mutate(fit.ts = map(data.ts, ~tslm(total.qty ~ trendx, data=.x)))
I get an error:
Error: Problem with
mutate()
inputfcast.ts
. x object 'trendx' not found and Inputfcast.ts
ismap(fit.ts, forecast)
.
How do I forecast this data with custom predictors in tslm model?
EDITI rewrote the code in order to use fable package:
monthly_qty_by_cat2 <-
bike_sales %>%
mutate(order.month = as_date(as.yearmon(order.date))) %>%
group_by(category.secondary, order.month) %>%
summarise(total.qty = sum(quantity)) %>%
mutate(trendx = row_number())
monthly_qty_by_cat2_nest <-
monthly_qty_by_cat2 %>%
group_by(category.secondary) %>%
as_tsibble(key = category.secondary)
monthly_qty_by_cat2_nest %>%
model(tslm = TSLM(total.qty ~ trendx)) %>%
forecast()
and receive the error:
Error: Problem with
mutate()
inputtslm
. x object 'trendx' not found Unable to compute required variables from providednew_data
. Does your model require extra variables to produce forecasts?
Upvotes: 1
Views: 935
Reputation: 31800
library(tidyverse)
library(tsibble)
library(fable)
library(lubridate)
monthly_qty_by_cat2 <-
sweep::bike_sales %>%
mutate(order.month = yearmonth(order.date)) %>%
group_by(category.secondary, order.month) %>%
summarise(total.qty = sum(quantity)) %>%
as_tsibble(index=order.month, key=category.secondary) %>%
mutate(x = rnorm(length(total.qty)))
#> `summarise()` regrouping output by 'category.secondary' (override with `.groups` argument)
future_x <- new_data(monthly_qty_by_cat2) %>%
mutate(x = 2)
monthly_qty_by_cat2 %>%
model(tslm = TSLM(total.qty ~ trend() + x)) %>%
forecast(new_data=future_x)
#> # A fable: 9 x 6 [1M]
#> # Key: category.secondary, .model [9]
#> category.secondary .model order.month total.qty .mean x
#> <chr> <chr> <mth> <dist> <dbl> <dbl>
#> 1 Cross Country Race tslm 2016 Jan N(369, 187840) 369. 2
#> 2 Cyclocross tslm 2016 Jan N(-2.5, 75604) -2.50 2
#> 3 Elite Road tslm 2016 Jan N(784, 322470) 784. 2
#> 4 Endurance Road tslm 2016 Jan N(159, 117760) 159. 2
#> 5 Fat Bike tslm 2016 Jan N(95, 66320) 94.6 2
#> 6 Over Mountain tslm 2016 Jan N(194, 57732) 194. 2
#> 7 Sport tslm 2016 Jan N(120, 81568) 120. 2
#> 8 Trail tslm 2016 Jan N(214, 56269) 214. 2
#> 9 Triathalon tslm 2016 Jan N(102, 94449) 102. 2
Created on 2020-07-20 by the reprex package (v0.3.0)
Upvotes: 3