Reputation: 3961
I'm trying to calculate the inverse Fourier transform of some data using Matlab. I start with raw data in the frequency domain and want to visualise the data in the time domain. Here is my MWE:
a = 1.056;
% frequency of data (I cannot change this)
w = linspace(-100,100,1e6);
L = length(w); % no. sample points
ts = L/1000; % time sampling
Ts = ts/L; % sampling rate
Fs = 1/Ts; % sampling freq
t = (-L/2:L/2-1)*ts/L; % time
Y = sqrt(pi/a)*exp(-w.^2/(4*a)); % my data
yn = Fs*ifftshift(ifft(fftshift(Y(end:-1:1)))) % numerical soln
ya = exp(-a*t.^2); % analytic solution
figure; hold on
plot(t,yn,'.')
plot(t,ya,'-')
xlabel('time, t')
legend('numerical','analytic')
xlim([-5,5])
I have adapted the code from this question however the amplitude is too large:
Can you please tell me what I'm doing wrong?
Upvotes: 1
Views: 582
Reputation: 60504
There are three issues with your code:
You define ts = L/1000
and then compute Fs
, which gives you 1000. But Fs
is given by the w
array you've set up: the full range of w
is 2*pi*Fs
:
Fs = -w(1)/pi; % sampling freq
Ts = 1/Fs; % sampling rate
Or, equivalently, set Fs = mean(diff(w))*L / (2*pi)
w
is defined, but does not include 0. Just like you define t
carefully to include the 0 in just the right place, so should you define w
to include 0 in just the right place. One simple way to do this is to define it with one more value, then delete the last value:
w = linspace(-100,100,1e6+1);
w(end) = [];
If your input data does not include the 0 frequency, you should resample it so that it does. The DFT (FFT) expects a 0 frequency bin.
You're using ifftshift
and fftshift
reversed: fftshift
shifts the origin from the leftmost array element to the middle, and ifftshift
shifts it from the middle to the left. You define your signal with the origin in the middle, so you need to use ifftshift
on it to move the origin where the fft
and ifft
functions expect it. Use fftshift
on the output of these two functions to center the origin for display. Because your data is even sized, these two functions do exactly the same thing, and you will not notice the difference. But if the data were odd sized, you'd see the difference.
The following code gives a perfect match:
a = 1.056;
% frequency of data (I cannot change this)
w = linspace(-100,100,1e6+1); w(end) = [];
L = length(w); % no. sample points
Fs = -w(1)/pi; % sampling freq
Ts = 1/Fs; % sampling rate
t = (-L/2:L/2-1)*Ts; % time
Y = sqrt(pi/a)*exp(-w.^2/(4*a)); % my data
yn = Fs*fftshift(ifft(ifftshift(Y(end:-1:1)))); % numerical soln
ya = exp(-a*t.^2); % analytic solution
figure; hold on
plot(t,yn,'.')
plot(t,ya,'-')
xlabel('time, t')
legend('numerical','analytic')
xlim([-5,5])
Upvotes: 1