Fanwei Zeng
Fanwei Zeng

Reputation: 55

H2O anomaly per_feature = TRUE java.lang.OutOfMemoryError: Java heap space

I run H2O anomaly with per_feature = TRUE which results in a Java Heap Space error. In some other posts about this error message, I see people suggest using h2o.remove(df) to release the used memory. However, in my case I don’t have any loop, and it seems that there is nothing I can remove to release some used memory.

Here is my code:

library(h2o)
h2o.init(min_mem_size = "10G", max_mem_size = "15G")

data.hex <- as.h2o(data)

x <- names(data.hex)

random_seed <- 42

# Deeplearning Model
print("Deep learning model begins ...")
model.dl = h2o.deeplearning(x = x, 
                              training_frame = data.hex, 
                              autoencoder = TRUE, 
                              activation = "Tanh",
                              hidden = c(5, 5, 5, 5, 5), 
                              mini_batch_size = 64,  
                              epochs = 100, 
                              stopping_rounds = 15,  
                              variable_importances = TRUE,
                              seed = random_seed) 

# Calculating anomaly per feature
print('Calculating anomaly per feature ...')
errors_per_feature <- h2o.anomaly(model.dl, data.hex, per_feature = TRUE) # Anomaly Detection Algorithm

print('Converting from H2O frame to dataframe ...')
errors1_per_feature <- as.data.frame(errors_per_feature) # Convert back to data frame

Here is the detailed error message:

[1] "Deep learning model begins ..."
  |======================================================================| 100%
[1] "Calculating anomaly per feature ..."

ERROR: Unexpected HTTP Status code: 500 Server Error (url = http://localhost:54321/3/Predictions/models/DeepLearning_model_R_1594826474037_2/frames/Accesses_sid_a71f_1)

water.util.DistributedException
 [1] "DistributedException from localhost/127.0.0.1:54321: 'Java heap space', caused by java.lang.OutOfMemoryError: Java heap space"
 [2] "    water.MRTask.getResult(MRTask.java:494)"                                                                                  
 [3] "    water.MRTask.getResult(MRTask.java:502)"                                                                                  
 [4] "    water.MRTask.doAll(MRTask.java:397)"                                                                                      
 [5] "    water.MRTask.doAll(MRTask.java:403)"                                                                                      
 [6] "    hex.deeplearning.DeepLearningModel.scoreAutoEncoder(DeepLearningModel.java:761)"                                          
 [7] "    water.api.ModelMetricsHandler.predict(ModelMetricsHandler.java:469)"                                                      
 [8] "    java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)"                                           
 [9] "    java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)"                         
[10] "    java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)"                 
[11] "    java.base/java.lang.reflect.Method.invoke(Method.java:567)"                                                               
[12] "    water.api.Handler.handle(Handler.java:60)"                                                                                
[13] "    water.api.RequestServer.serve(RequestServer.java:470)"                                                                    
[14] "    water.api.RequestServer.doGeneric(RequestServer.java:301)"                                                                
[15] "    water.api.RequestServer.doPost(RequestServer.java:227)"                                                                   
[16] "    javax.servlet.http.HttpServlet.service(HttpServlet.java:755)"                                                             
[17] "    javax.servlet.http.HttpServlet.service(HttpServlet.java:848)"                                                             
[18] "    org.eclipse.jetty.servlet.ServletHolder.handle(ServletHolder.java:684)"                                                   
[19] "    org.eclipse.jetty.servlet.ServletHandler.doHandle(ServletHandler.java:501)"                                               
[20] "    org.eclipse.jetty.server.handler.ContextHandler.doHandle(ContextHandler.java:1086)"                                       
[21] "    org.eclipse.jetty.servlet.ServletHandler.doScope(ServletHandler.java:427)"                                                
[22] "    org.eclipse.jetty.server.handler.ContextHandler.doScope(ContextHandler.java:1020)"                                        
[23] "    org.eclipse.jetty.server.handler.ScopedHandler.handle(ScopedHandler.java:135)"                                            
[24] "    org.eclipse.jetty.server.handler.HandlerCollection.handle(HandlerCollection.java:154)"                                    
[25] "    org.eclipse.jetty.server.handler.HandlerWrapper.handle(HandlerWrapper.java:116)"                                          
[26] "    water.webserver.jetty8.Jetty8ServerAdapter$LoginHandler.handle(Jetty8ServerAdapter.java:119)"                             
[27] "    org.eclipse.jetty.server.handler.HandlerCollection.handle(HandlerCollection.java:154)"                                    
[28] "    org.eclipse.jetty.server.handler.HandlerWrapper.handle(HandlerWrapper.java:116)"                                          
[29] "    org.eclipse.jetty.server.Server.handle(Server.java:370)"                                                                  
[30] "    org.eclipse.jetty.server.AbstractHttpConnection.handleRequest(AbstractHttpConnection.java:494)"                           
[31] "    org.eclipse.jetty.server.BlockingHttpConnection.handleRequest(BlockingHttpConnection.java:53)"                            
[32] "    org.eclipse.jetty.server.AbstractHttpConnection.content(AbstractHttpConnection.java:984)"                                 
[33] "    org.eclipse.jetty.server.AbstractHttpConnection$RequestHandler.content(AbstractHttpConnection.java:1045)"                 
[34] "    org.eclipse.jetty.http.HttpParser.parseNext(HttpParser.java:861)"                                                         
[35] "    org.eclipse.jetty.http.HttpParser.parseAvailable(HttpParser.java:236)"                                                    
[36] "    org.eclipse.jetty.server.BlockingHttpConnection.handle(BlockingHttpConnection.java:72)"                                   
[37] "    org.eclipse.jetty.server.bio.SocketConnector$ConnectorEndPoint.run(SocketConnector.java:264)"                             
[38] "    org.eclipse.jetty.util.thread.QueuedThreadPool.runJob(QueuedThreadPool.java:608)"                                         
[39] "    org.eclipse.jetty.util.thread.QueuedThreadPool$3.run(QueuedThreadPool.java:543)"                                          
[40] "    java.base/java.lang.Thread.run(Thread.java:830)"                                                                          
[41] "Caused by:java.lang.OutOfMemoryError: Java heap space"                                                                        

Error in .h2o.doSafeREST(h2oRestApiVersion = h2oRestApiVersion, urlSuffix = page,  : 
  

ERROR MESSAGE:

DistributedException from localhost/127.0.0.1:54321: 'Java heap space'

Calls: h2o.anomaly -> .h2o.__remoteSend -> .h2o.doSafeREST
Execution halted

R and H2O version:

    H2O cluster version:        3.30.0.6  
    H2O cluster total nodes:    1 
    H2O cluster total memory:   13.43 GB 
    H2O cluster total cores:    16 
    H2O cluster allowed cores:  16 
    H2O cluster healthy:        TRUE 
    R Version:                  R version 3.6.3 (2020-02-29)

I have 16 GB of memory on my macOS.

There are 6 variables (columns) in data: 5 categorical variables and 1 numeric variable. The number of unique values in the 5 categorical variables is 17, 49, 52, 85 and 5032, respectively. The number of rows is ~500k. The data file size is 44 MB (before encoding within H2O).

What can I do in my case to resolve the issue? Please let me know if there is any other information I can provide. Thanks for your help!

Upvotes: 0

Views: 649

Answers (1)

TomKraljevic
TomKraljevic

Reputation: 3671

[cutting and pasting my response to the h2ostream mailing list here too...]

i suspect the large number of categorical levels is causing the memory to blow up.

try removing that variable and seeing if it at least completes.

if it does, try re-binning into a smaller number of levels somehow.

Upvotes: 1

Related Questions