Reputation: 35
I am SUPER new to python coding and would like some help. I was able to segment each cell outline within a biological tissue (super cool!) and now I am trying to find the centroid of each cell within a tissue using this:
I am using this code:
img = cv2.imread('/Users/kate/Desktop/SegmenterTest/SegmentedCells/Seg1.png')
image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(image, 60, 255, cv2.THRESH_BINARY)[1]
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
# loop over the contours
for c in cnts:
# compute the center of the contour
M = cv2.moments(c)
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
# draw the contour and center of the shape on the image
cv2.drawContours(image, [c], -1, (0, 255, 0), 2)
cv2.circle(image, (cX, cY), 7, (255, 255, 255), -1)
cv2.putText(image, "center", (cX - 20, cY - 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
# show the image
cv2.imshow("Image", image)
cv2.waitKey(0)
However, when I use this code, it is giving me the centroid of the ENTIRE object, and not each individual object to give this.
I have no idea where to go from here, so a nudge in the right direction would be greatly appreciated!
Upvotes: 1
Views: 2136
Reputation: 2398
Problem
cv2.findContours
uses an algorithm which has a few different 'retrieval modes'. These affect which contours are returned and how they are returned. This is documented here. These are given as the second argument to findContours
. Your code uses cv2.RETR_EXTERNAL
which means findContours
will only return the outermost border of separate objects.
Solution
Changing this argument to cv2.RETR_LIST
will give you all the contours in the image (including the one outermost border). This is the simplest solution.
E.g.
import cv2
import imutils
img = cv2.imread('/Users/kate/Desktop/SegmenterTest/SegmentedCells/Seg1.png')
image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(image, 60, 255, cv2.THRESH_BINARY)[1]
cnts = cv2.findContours(thresh.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
# loop over the contours
for c in cnts:
# compute the center of the contour
M = cv2.moments(c)
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
# draw the contour and center of the shape on the image
cv2.drawContours(image, [c], -1, (0, 255, 0), 2)
cv2.circle(image, (cX, cY), 7, (255, 255, 255), -1)
cv2.putText(image, "center", (cX - 20, cY - 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
# show the image
cv2.imshow("Image", image)
cv2.waitKey(0)
Selecting only the innermost objects
To reliably omit the outer contours you can take advantage of the ability of findContours
to return a hierarchy of the contours it detects. To do this, you can change the retrieval mode argument once again to RETR_TREE
, which will generate a full hierarchy.
The hierarchy is an array containing arrays of 4 values for each contour in the image. Each value is an index of a contour in the contour array. From the docs:
For each i-th contour
contours[i]
, the elementshierarchy[i][0]
,hierarchy[i][1]
,hierarchy[i][2]
, andhierarchy[i][3]
are set to 0-based indices in contours of the next and previous contours at the same hierarchical level, the first child contour and the parent contour, respectively. If for the contour i there are no next, previous, parent, or nested contours, the corresponding elements ofhierarchy[i]
will be negative.
When we say 'innermost', what we mean is contours that have no children (contours inside of them). So we want those contours whose entry in the hierarchy has a negative 3rd value. That is, contours[i]
, such that hierarchy[i][2] < 0
A small wrinkle is that although findContours
returns a tuple which includes the hierarchy, imutils.grabContours
discards the hierarchy and returns just the array of contours. All this means is that we have to do the work of grabContours
ourselves, if we intend on working with different versions of OpenCV. This is just a simple if else
statement.
res = cv2.findContours(thresh.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# switch for different versions of OpenCV
if len(cnts) == 3:
_, cnts, hierarchy = res
else:
cnts, hierarchy = res
Once you have hierarchy
, checking if a contour, cnts[i]
is 'innermost' can be done with hierarchy[0][i][2] < 0
, which should be False
for contours that contain other contours.
A full example based on your question's code:
import cv2
import imutils
img = cv2.imread('/Users/kate/Desktop/SegmenterTest/SegmentedCells/Seg1.png')
image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(image, 60, 255, cv2.THRESH_BINARY)[1]
cnts = cv2.findContours(thresh.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# switch for different versions of OpenCV
if len(cnts) == 3:
_, cnts, hierarchy = cnts
else:
cnts, hierarchy = cnts
# loop over the contours
for i, c in enumerate(cnts):
# check that it is 'innermost'
if hierarchy[0][i][2] < 0:
# compute the center of the contour
M = cv2.moments(c)
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
# draw the contour and center of the shape on the image
cv2.drawContours(image, [c], -1, (0, 255, 0), 2)
cv2.circle(image, (cX, cY), 7, (255, 255, 255), -1)
cv2.putText(image, "center", (cX - 20, cY - 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
# show the image
cv2.imshow("Image", image)
cv2.waitKey(0)
Upvotes: 1
Reputation: 1777
You can use the function regionprops from the module scikit-image in your case. Here is what I got.
This is the code I used.
import cv2
import matplotlib.pyplot as plt
from skimage import measure
import numpy as np
cells = cv2.imread('cells.png',0)
ret,thresh = cv2.threshold(cells,20,255,cv2.THRESH_BINARY_INV)
labels= measure.label(thresh, background=0)
bg_label = labels[0,0]
labels[labels==bg_label] = 0 # Assign background label to 0
props = measure.regionprops(labels)
fig,ax = plt.subplots(1,1)
plt.axis('off')
ax.imshow(cells,cmap='gray')
centroids = np.zeros(shape=(len(np.unique(labels)),2)) # Access the coordinates of centroids
for i,prop in enumerate(props):
my_centroid = prop.centroid
centroids[i,:]= my_centroid
ax.plot(my_centroid[1],my_centroid[0],'r.')
# print(centroids)
# fig.savefig('out.png', bbox_inches='tight', pad_inches=0)
plt.show()
Good luck with your research!
Upvotes: 2