Reputation: 28044
I have a file containing paths to images I would like to load into Pytorch, while utilizing the built-in dataloader features (multiprocess loading pipeline, data augmentations, and so on).
def create_links():
data_dir = "/myfolder"
full_path_list = []
assert os.path.isdir(data_dir)
for _, _, filenames in os.walk(data_dir):
for filename in filenames:
full_path_list.append(os.path.join(data_dir, filename))
with open(config.data.links_file, 'w+') as links_file:
for full_path in full_path_list:
links_file.write(f"{full_path}\n")
def read_links_file_to_list():
config = ConfigProvider.config()
links_file_path = config.data.links_file
if not os.path.isfile(links_file_path):
raise RuntimeError("did you forget to create a file with links to images? Try using 'create_links()'")
with open(links_file_path, 'r') as links_file:
return links_file.readlines()
So I have a list of files (or a generator, or whatever works), file_list = read_links_file_to_list()
.
How can I build a Pytorch dataloader around it, and how would I use it?
Upvotes: 0
Views: 3596
Reputation: 2393
What you want is a Custom Dataset. The __getitem__
method is where you would apply transforms such as data-augmentation etc. To give you an idea of what it looks like in practice you can take a look at this Custom Dataset I wrote the other day:
class GTSR43Dataset(Dataset):
"""German Traffic Sign Recognition dataset."""
def __init__(self, root_dir, train_file, transform=None):
self.root_dir = root_dir
self.train_file_path = train_file
self.label_df = pd.read_csv(os.path.join(self.root_dir, self.train_file_path))
self.transform = transform
self.classes = list(self.label_df['ClassId'].unique())
def __getitem__(self, idx):
"""Return (image, target) after resize and preprocessing."""
img = os.path.join(self.root_dir, self.label_df.iloc[idx, 7])
X = Image.open(img)
y = self.class_to_index(self.label_df.iloc[idx, 6])
if self.transform:
X = self.transform(X)
return X, y
def class_to_index(self, class_name):
"""Returns the index of a given class."""
return self.classes.index(class_name)
def index_to_class(self, class_index):
"""Returns the class of a given index."""
return self.classes[class_index]
def get_class_count(self):
"""Return a list of label occurences"""
cls_count = dict(self.label_df.ClassId.value_counts())
# cls_percent = list(map(lambda x: (1 - x / sum(cls_count)), cls_count))
return cls_count
def __len__(self):
"""Returns the length of the dataset."""
return len(self.label_df)
Upvotes: 4