Reputation: 29
I am trying to allocate a 3D array u[-nx/2:nx/2-1][-nx/2:nx/2-1][-nx/2:nx/2-1]
int nx = 512;
double *** u = (double ***)malloc(nx * sizeof(double**));
for (int i = -nx/2; i < nx/2; i++) {
u[i] = (double **)malloc(nx * sizeof(double *));
for (int j = -nx/2; j < nx/2; j++) {
u[i][j] = (double *)malloc(nx * sizeof(double));
}
}
Is this a correct way to do it? If it's not, how should I change it?
Upvotes: 0
Views: 218
Reputation: 37777
First off, all C arrays have index values ranging from 0
to ELEMENT_COUNT-1
. Always.
As you are using malloc, I am presuming that the value of nx
is only defined at runtime. This rules out static array sizes and thus rules out using the cute arr[x][y][z]
syntax as in:
#define NX 512
double arr[NX][NX][NX];
void foo(void)
{
...
arr[z1][y1][x1] += 2 * arr[z2][y2][x2];
...
}
That in turn means that to have the functionality of a 3D array with nx
different values for each of its three dimensions dimension, you will need to allocate a linear memory area of size nx_cubed = nx * nx * nx
. To calculate that value nx_cubed
properly, you will need to check for integer overflows.
Also, you need to properly convert from signed int
coordinate values to unsigned size_t
values used in the 0 based index ranges.
if (nx < 0) {
fprintf(stderr, "negative value of nx\n");
exit(EXIT_FAILURE);
}
const size_t unx = nx;
const size_t nx_cubed = unx * unx * unx;
/* TODO: Complete check for overflows */
if (nx_cubed < unx) {
fprintf(stderr, "nx_cubed overflow\n");
exit(EXIT_FAILURE);
}
Then you can allocate a memory buffer of the appropriate size, and then check that the malloc
call has actually worked.
double *buf = malloc(nx_cubed);
if (!buf) {
fprintf(stderr, "Error allocating memory for nx_cubed elements\n");
exit(EXIT_FAILURE);
}
Now there is the question of calculcating the array index from your x
, y
, and z
values each ranging from -nx/2
to nx/2-1
. I recommend writing a function for that which maps that range to the 0
to nx-1
range, and then calculates the proper linear index from the three 0-based values. Again, proper integer overflow checks should be performed.
size_t array3index(const size_t nx, const int x, const int y, const int z) {
const size_t half_nx = nx/2;
/* zero based 3D coordinates,
* this probably triggers some signedness warnings */
const size_t x0 = half_nx + x;
const size_t y0 = half_nx + y;
const size_t z0 = half_nx + z;
if ((x0 >= nx) || (y0 >= nx) || (z0 >= nx)) {
fprintf(stderr, "Signed coordinate(s) out of range: (%d, %d, %d)\n",
x, y, z);
exit(EXIT_FAILURE);
}
const size_t idx = nx * (nx * z0 + y0) + x0;
/* Assuming that we have already checked that nx*nx*nx does not
* overflow, and given that we have checked for x0, y0, z0 to be
* in the range of 0 to (nx-1), the idx calculation should not
* have overflown here. */
return idx;
}
Then you can do your accesses to the 3D array like
const i1 = array3index(nx, x1, y1, z1);
const i2 = array3index(nx, x2, y2, z2);
buf[i1] += 2*buf[i2];
Considering the amount of calculations needed inside array3index
, I would examine whether it makes more sense to do the array iteration in the 0
to nx-1
domain directly, and only convert that to -nx/2
to nx/2-1
range values if you actually need that value within a calculation.
Upvotes: 0
Reputation: 510
No. Array in C is actually just plain/flat memory block, which is always 0 based and always in 1d (one demension).
Suppose you need a 3d array in arbitrary boundary,
say u[lb_1d, ub_1d][lb_2d, ub_2d][lb_3d, ub_3d]
,
you will need to do some mapping -- address space from 3d to 1d and vice versa --.
Sample implementation like this:
typedef struct
{
double* _arr;
int _lb_1d;
int _ub_1d;
int _lb_2d;
int _ub_2d;
int _lb_3d;
int _ub_3d;
}DoubleArr3D;
DoubleArr3D* create_3d_arr(int lb_1d, int ub_1d, int lb_2d, int ub_2d, int lb_3d, int ub_3d)
{
int array_size = (ub_1d - lb_1d +1) * (ub_2d - lb_2d +1) * (ub_3d - lb_3d +1);
DoubleArr3D * arr = (DoubleArr3D *)malloc( sizeof( DoubleArr3D) );
if (!arr)
{
return NULL;
}
arr->_lb_1d = lb_1d;
arr->_ub_1d = ub_1d;
arr->_lb_2d = lb_2d;
arr->_ub_2d = ub_2d;
arr->_lb_3d = lb_3d;
arr->_ub_3d = ub_3d;
arr->_arr = (double*) malloc(sizeof(double) * (size_t) array_size);
if (!arr)
{
free(arr);
return NULL;
}
return arr;
}
// arr[i1d, i2d, i3d] ==> arr_get_at(arr, i1d, i2d, i3d)
double arr_get_at(DoubleArr3D* arr, int i1d, int i2d, int i3d )
{
if (!arr || !arr->_arr)
{
// just demo of 'validation check'. in real code we should have meanful error report
return 0;
}
return arr->_arr [
i3d - arr->_lb_3d
+ (i2d - arr->_lb_2d ) * (arr->_ub_3d - arr->_lb_3d +1)
+ (i1d - arr->_lb_1d ) * (arr->_ub_2d - arr->_lb_2d +1) * (arr->_ub_3d - arr->_lb_3d +1)
];
}
Upvotes: 0
Reputation: 224921
No, that’s not correct. You can get it to work by placing every pointer in the middle of the dimension it represents:
int nx = 512;
double*** u = (double***)malloc(nx * sizeof(double**)) + nx/2;
for (int i = -nx/2; i < nx/2; i++) {
u[i] = (double**)malloc(nx * sizeof(double*)) + nx/2;
for (int j = -nx/2; j < nx/2; j++) {
u[i][j] = (double*)malloc(nx * sizeof(double)) + nx/2;
}
}
but that’s unusual and confusing, does a lot of separate allocations, and has to be undone for the deallocation step.
Consider one block with accessors instead:
#define NX 512
/* or just double* if nx is dynamic, and calculate the index manually */
double[NX][NX][NX]* u = malloc(sizeof(*u));
double array_get(double[NX][NX][NX] const* u, int i, int j, int k) {
return u[i + NX/2][j + NX/2][k + NX/2];
}
void array_set(double[NX][NX][NX]* u, int i, int j, int k, double value) {
u[i + NX/2][j + NX/2][k + NX/2] = value;
}
Upvotes: 2