Reputation: 979
I have 2 dictionaries and i need to create the column based on several condition.
dict1 = {'100': BMW, '200': Audi, '300': 'VW'}
dict2 = {'100': Mercedes, '200': Nissan, '300': 'Renault'}
df:
class Code
1 200
1 300
2 300
1 100
2 100
I actually want to use dict1 when class is 1 and dict2 when class is 2
desired output would be like this:
class Code Car
1 200 Audi
1 300 VW
2 300 Renault
1 100 BMW
2 100 Mercedes
I could use .map if i had no condition but i am not sure what to use now:
df['Car'] = df['Code'].map(dict1)
Upvotes: 0
Views: 556
Reputation: 650
i tested with the follwing code
import pandas as pd
dict1 = {'100': 'BMW', '200': 'Audi', '300': 'VW'}
dict2 = {'100': 'Mercedes', '200': 'Nissan', '300': 'Renault'}
df = pd.DataFrame({'Class':[1,1,2,1],'Code':['200','300','300','100']})
def f(row):
if row['Class'] == 1:
val = dict1[row['Code']]
elif row['Class'] ==2:
val = dict2[row['Code']]
else:
val = dict2[row['Code']]
return val
df['Car']= df.apply(f,axis=1)
print(df)
it prints
Class Code Car
0 1 200 Audi
1 1 300 VW
2 2 300 Renault
3 1 100 BMW
Upvotes: 1
Reputation: 150735
If it's just two dictionaries/classes:
# note that your dictionary has string key
df['Code'] = df.Code.astype(str)
df['car'] = np.where(df['class']==1,
df['Code'].map(dict1),
df['Code'].map(dict2) )
Output:
class Code Car
0 1 200 Audi
1 1 300 VW
2 2 300 Renault
3 1 100 BMW
4 2 100 Mercedes
Upvotes: 0