Reputation: 457
Is there any way to run tensorboard in google collab while using tensorflow-1.x? If not, how to use tensorboard in with tensorflow-1.x?
I would appreciate posting an any working example.
Upvotes: 0
Views: 834
Reputation:
Yes, it is possible. Here is the complete working code to visualize histogram using Tensorboard in Google Colab.
%tensorflow_version 1.x
%load_ext tensorboard
import tensorflow as tf
print(tf.__version__)
import datetime, os
fashion_mnist = tf.keras.datasets.fashion_mnist
(x_train, y_train),(x_test, y_test) = fashion_mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
def create_model():
return tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
def train_model():
model = create_model()
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
logdir = os.path.join("logs", datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
tensorboard_callback = tf.keras.callbacks.TensorBoard(logdir, histogram_freq=1)
model.fit(x=x_train,
y=y_train,
epochs=5,
validation_data=(x_test, y_test),
callbacks=[tensorboard_callback])
train_model()
%tensorboard --logdir logs
Output:
TensorFlow 1.x selected.
1.15.2
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz
32768/29515 [=================================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx3-ubyte.gz
26427392/26421880 [==============================] - 1s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-labels-idx1-ubyte.gz
8192/5148 [===============================================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-images-idx3-ubyte.gz
4423680/4422102 [==============================] - 0s 0us/step
WARNING:tensorflow:From /tensorflow-1.15.2/python3.6/tensorflow_core/python/ops/resource_variable_ops.py:1630: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version.
Instructions for updating:
If using Keras pass *_constraint arguments to layers.
Train on 60000 samples, validate on 10000 samples
Epoch 1/5
60000/60000 [==============================] - 15s 250us/sample - loss: 0.4987 - acc: 0.8206 - val_loss: 0.4289 - val_acc: 0.8476
Epoch 2/5
60000/60000 [==============================] - 15s 253us/sample - loss: 0.3847 - acc: 0.8592 - val_loss: 0.3928 - val_acc: 0.8600
Epoch 3/5
60000/60000 [==============================] - 15s 246us/sample - loss: 0.3463 - acc: 0.8730 - val_loss: 0.3713 - val_acc: 0.8660
Epoch 4/5
60000/60000 [==============================] - 15s 246us/sample - loss: 0.3292 - acc: 0.8786 - val_loss: 0.3523 - val_acc: 0.8697
Epoch 5/5
60000/60000 [==============================] - 15s 249us/sample - loss: 0.3100 - acc: 0.8848 - val_loss: 0.3455 - val_acc: 0.8757
Upvotes: 1