Reputation: 6294
Given variable-length inputs, the accuracy metric is incorrect because short vectors are padded to longer ones.
Using the Masking
layer from keras
solves this, by applying a mask to all zero values, but because my sequence contains zeros naturally, and super long (50,000 tokens) this slows down training by 50 times!
I have a dataset represented in tf.data.Dataset
which contains 3 properties per example:
src
- an input sequencetgt
- class ID output sequencetokens
number of tokens in the sequenceAnd I would like to train a sequence tagging model.
In order to use it with Keras, I understand I need to only have an x
and y
in my dataset, so I map:
dataset = dataset.map(lambda d: (d['src'], d['tgt']))
And I pass to a keras model:
model = tf.keras.Sequential([
tf.keras.layers.LSTM(hidden_size, return_sequences=True),
tf.keras.layers.Dense(2),
tf.keras.layers.Activation(activations.softmax)
])
Is there a way to apply a mask as part of the dataset pipeline, in graph mode? (the mask is tf.sequence_mask(datum['tokens'])
)
Alternatively, there is no issue with passing an unmasked sequence, if I could pass in my dataset the number of tokens
as well, and create my own evaluation metric that applies the mask there.
I couldn't find how to pass a dataset with 3 items rather than 2, keras sequential model doesn't seem to allow that.
Upvotes: 0
Views: 512
Reputation: 36594
Hope this helps. You can see it takes not just input/output, but a second input as well. I'm also using more than 1 output, and so you can pass information in and out of the neural network. I hope you'll feel energized by the customizable nature of this example.
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow as tf
from tensorflow.keras.layers import Dense
from tensorflow.keras import Model
from sklearn.datasets import load_iris
from functools import partial
tf.keras.backend.set_floatx('float64')
iris, target = load_iris(return_X_y=True)
X = iris[:, :3]
y = iris[:, 3]
z = target
onehot = partial(tf.one_hot, depth=3)
dataset = tf.data.Dataset.from_tensor_slices((X, y, z)).shuffle(150)
train_ds = dataset.take(120).shuffle(10).\
batch(8).map(lambda a, b, c: (a, b, onehot(c)))
test_ds = dataset.skip(120).take(30).shuffle(10).\
batch(8).map(lambda a, b, c: (a, b, onehot(c)))
next(iter(train_ds))
class MyModel(Model):
def __init__(self):
super(MyModel, self).__init__()
self.d0 = Dense(64, activation='relu')
self.d1 = Dense(128, activation='relu')
self.d2 = Dense(1)
self.d3 = Dense(3)
def call(self, x, training=None, **kwargs):
x = self.d0(x)
x = self.d1(x)
a = self.d2(x)
b = self.d3(x)
return a, b
model = MyModel()
loss_obj_reg = tf.keras.losses.MeanAbsoluteError()
loss_obj_cat = tf.keras.losses.CategoricalCrossentropy(from_logits=True)
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)
loss_reg_train = tf.keras.metrics.Mean(name='regression loss')
loss_cat_train = tf.keras.metrics.Mean(name='categorical loss')
loss_reg_test = tf.keras.metrics.Mean(name='regression loss')
loss_cat_test = tf.keras.metrics.Mean(name='categorical loss')
train_acc = tf.keras.metrics.CategoricalAccuracy()
test_acc = tf.keras.metrics.CategoricalAccuracy()
@tf.function
def train_step(inputs, y_reg, y_cat):
with tf.GradientTape() as tape:
pred_reg, pred_cat = model(inputs, training=True)
reg_loss = loss_obj_reg(y_reg, pred_reg)
cat_loss = loss_obj_cat(y_cat, pred_cat)
gradients = tape.gradient([reg_loss, cat_loss], model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
loss_reg_train(reg_loss)
loss_cat_train(cat_loss)
train_acc(y_cat, pred_cat)
@tf.function
def test_step(inputs, y_reg, y_cat):
pred_reg, pred_cat = model(inputs, training=False)
reg_loss = loss_obj_reg(y_reg, pred_reg)
cat_loss = loss_obj_cat(y_cat, pred_cat)
loss_reg_test(reg_loss)
loss_cat_test(cat_loss)
test_acc(y_cat, pred_cat)
for epoch in range(250):
loss_reg_train.reset_states()
loss_cat_train.reset_states()
loss_reg_test.reset_states()
loss_cat_test.reset_states()
train_acc.reset_states()
test_acc.reset_states()
for xx, yy, zz in train_ds:
train_step(xx, yy, zz)
for xx, yy, zz in test_ds:
test_step(xx, yy, zz)
template = 'Epoch {:3} ' \
'MAE {:5.3f} TMAE {:5.3f} ' \
'Entr {:5.3f} TEntr {:5.3f} ' \
'Acc {:7.2%} TAcc {:7.2%}'
print(template.format(epoch+1,
loss_reg_train.result(),
loss_reg_test.result(),
loss_cat_train.result(),
loss_cat_test.result(),
train_acc.result(),
test_acc.result()))
Let me know if you need any kind of information.
Upvotes: 1