Reputation: 1599
I would like to replace a column of pyspark dataframe.
the dataframe:
price
90.16|USD
I need:
dollar_price currency
9016 USD
Pyspark code:
new_col = F.when(F.col("price").isNull() == False, F.substring(F.col('price'), 1, F.instr(F.col('retail_value'), '|')-1)).otherwise(null)
new_df = df.withColumn('dollar_price', new_col)
new_col = F.when(F.col("price").isNull() == False, F.substring(F.col('price'), F.instr(F.col('retail_value'), '|')+1, 3)).otherwise(null)
new_df_1 = new_df.withColumn('currency', new_col)
I got error:
TypeError: Column is not iterable
Could you please tell me what I missed ?
I have tried Split a dataframe column's list into two dataframe columns
but it does not work.
thanks
Upvotes: 2
Views: 768
Reputation: 31540
Try with expr
as you are computing value from instr
function.
Example:
df.show()
#+---------+
#| price|
#+---------+
#|90.16|USD|
#+---------+
from pyspark.sql.functions import *
from pyspark.sql.types import *
df.withColumn("dollar_price",when(col("price").isNull()==False,expr("substring(price,1,instr(price,'|')-1)")).otherwise(None)).\
withColumn("currency",when(col("price").isNull()==False,expr("substring(price,instr(price,'|')+1,3)")).otherwise(None)).\
show()
#+---------+------------+--------+
#| price|dollar_price|currency|
#+---------+------------+--------+
#|90.16|USD| 90.16| USD|
#+---------+------------+--------+
Upvotes: 2