Reputation: 53
I have a dataframe as following:
Company Date relTweet GaplastRel
XYZ 3/2/2020 1
XYZ 3/3/2020 1
XYZ 3/4/2020 1
XYZ 3/5/2020 1
XYZ 3/5/2020 0
XYZ 3/6/2020 1
XYZ 3/8/2020 1
ABC 3/9/2020 0
ABC 3/10/2020 1
ABC 3/11/2020 0
ABC 3/12/2020 1
The relTweet displays whether the tweet is relevant (1) or not (0). \nI need to find the days difference (GaplastRel) between each successive rows for each company, with a condition that the previous day's tweet should be relevant tweet (i.e. relTweet =1 ). e.g. For the first record relTweet should be 0. For the 2nd record, relTweet should be 1 as the last relevant tweet was made one day ago.
Below is the example of needed output:
Company Date relTweet GaplastRel
XYZ 3/2/2020 1 0
XYZ 3/3/2020 1 1
XYZ 3/4/2020 1 1
XYZ 3/5/2020 1 1
XYZ 3/5/2020 0 1
XYZ 3/6/2020 1 1
XYZ 3/8/2020 1 2
ABC 3/9/2020 0 0
ABC 3/10/2020 1 0
ABC 3/11/2020 0 1
ABC 3/12/2020 1 2
Following is my code:
dataDf['Date'] = pd.to_datetime(dataDf['Date'], format='%m/%d/%Y')
dataDf['relTweet'] = (dataDf.groupby('Company', group_keys=False)
.apply(lambda g: g['Date'].diff().replace(0, np.nan).ffill()))
This code gives the days difference between successive rows for each company without conisidering the relTweet =1 condition. I am not sure how to apply the condition. Following is the output of the above code:
Company Date relTweet GaplastRel
XYZ 3/2/2020 1 NaT
XYZ 3/3/2020 1 1 days
XYZ 3/4/2020 1 1 days
XYZ 3/5/2020 1 1 days
XYZ 3/5/2020 0 0 days
XYZ 3/6/2020 1 1 days
XYZ 3/8/2020 1 2 days
ABC 3/9/2020 0 NaT
ABC 3/10/2020 1 1 days
ABC 3/11/2020 0 1 days
ABC 3/12/2020 1 1 days
Upvotes: 3
Views: 102
Reputation: 323226
Change your mind sometime we need merge_asof
rather than groupby
df1=df.loc[df['relTweet']==1,['Company','Date']]
df=pd.merge_asof(df,df1.assign(Date1=df1.Date),by='Company',on='Date', allow_exact_matches=False)
df['GaplastRel']=(df.Date-df.Date1).dt.days.fillna(0)
df
Out[31]:
Company Date relTweet Date1 GaplastRel
0 XYZ 2020-03-02 1 NaT 0.0
1 XYZ 2020-03-03 1 2020-03-02 1.0
2 XYZ 2020-03-04 1 2020-03-03 1.0
3 XYZ 2020-03-05 1 2020-03-04 1.0
4 XYZ 2020-03-05 0 2020-03-04 1.0
5 XYZ 2020-03-06 1 2020-03-05 1.0
6 XYZ 2020-03-08 1 2020-03-06 2.0
7 ABC 2020-03-09 0 NaT 0.0
8 ABC 2020-03-10 1 NaT 0.0
9 ABC 2020-03-11 0 2020-03-10 1.0
10 ABC 2020-03-12 1 2020-03-10 2.0
Upvotes: 2