Reputation: 83
I'm working on fine-tuning the USE v4 model from tf hub. The dataset used is a sentence pair with target label [0,1].
Following is my code,
model = tf.keras.models.Sequential()
model.add(hub.KerasLayer('https://tfhub.dev/google/universal-sentence-encoder/4',
input_shape=[2,],
dtype=tf.string,
trainable=True))
model.add(tf.keras.layers.Dense(1, activation='sigmoid'))
model.summary()
resulting in error,
ValueError: Shape must be rank 1 but is rank 2 for '{{node text_preprocessor/tokenize/StringSplit/StringSplit}} = StringSplit[skip_empty=true](text_preprocessor/StaticRegexReplace_1, text_preprocessor/tokenize/StringSplit/Const)' with input shapes: [?,2], [].
It would be great if someone can help me understand where I have gone wrong.
Upvotes: 0
Views: 490
Reputation: 133
As @qmeeus mentioned, input_shape need to be [], or you can skip specify the input_shape all together. So something like the following:
use_url = "https://tfhub.dev/google/universal-sentence-encoder-large/4"
feature_extractor_layer = hub.KerasLayer(use_url, input_shape=[], trainable=True)
model = tf.keras.Sequential([
feature_extractor_layer,
layers.Dense(1, activation='sigmoid')
])
This github issue might be helpful.
In order to pass in a pair of sentences, you can reuse the feature_extractor_layer in a Siamese network.
Upvotes: 1