Reputation: 59
i am trying to read .txt file in Spark 2.4 and load it to dataframe. FILE data looks like :-
under a single Manager there is many employee
Manager_21: Employee_575,Employee_2703,
Manager_11: Employee_454,Employee_158,
Manager_4: Employee_1545,Employee_1312
Code i have written in Scala Spark 2.4 :-
val df = spark.read
.format("csv")
.option("header", "true") //first line in file has headers
.option("mode", "DROPMALFORMED")
.load("D:/path/myfile.txt")
df.printSchema()
Unfortunately while printing schema it is visible all Employee under single Manager_21.
root
|-- Manager_21: servant_575: string (nullable = true)
|-- Employee_454: string (nullable = true)
|-- Employee_1312 string (nullable = true)
....... ...... etc
I am not sure if it is possible in spark scala....
Expected Output:
all employee of a manager in same column. for ex: Manager 21 has 2 employee and all are in same column. Or How can we see which all employee are under a particular manager.
Manager_21 |Manager_11 |Manager_4
Employee_575 |Employee_454 |Employee_1545
Employee_2703|Employee_158|Employee_1312
is it possible to do some other way..... please suggest
Thanks
Upvotes: 0
Views: 1027
Reputation: 31470
Try using spark.read.text
then using groupBy
and .pivot
to get the desired result.
Example:
val df=spark.read.text("<path>")
df.show(10,false)
//+--------------------------------------+
//|value |
//+--------------------------------------+
//|Manager_21: Employee_575,Employee_2703|
//|Manager_11: Employee_454,Employee_158 |
//|Manager_4: Employee_1545,Employee_1312|
//+--------------------------------------+
import org.apache.spark.sql.functions._
df.withColumn("mid",monotonically_increasing_id).
withColumn("col1",split(col("value"),":")(0)).
withColumn("col2",split(split(col("value"),":")(1),",")).
groupBy("mid").
pivot(col("col1")).
agg(min(col("col2"))).
select(max("Manager_11").alias("Manager_11"),max("Manager_21").alias("Manager_21") ,max("Manager_4").alias("Manager_4")).
selectExpr("explode(arrays_zip(Manager_11,Manager_21,Manager_4))").
select("col.*").
show()
//+-------------+-------------+--------------+
//| Manager_11| Manager_21| Manager_4|
//+-------------+-------------+--------------+
//| Employee_454| Employee_575| Employee_1545|
//| Employee_158|Employee_2703| Employee_1312|
//+-------------+-------------+--------------+
UPDATE:
val df=spark.read.text("<path>")
val df1=df.withColumn("mid",monotonically_increasing_id).
withColumn("col1",split(col("value"),":")(0)).
withColumn("col2",split(split(col("value"),":")(1),",")).
groupBy("mid").
pivot(col("col1")).
agg(min(col("col2"))).
select(max("Manager_11").alias("Manager_11"),max("Manager_21").alias("Manager_21") ,max("Manager_4").alias("Manager_4")).
selectExpr("explode(arrays_zip(Manager_11,Manager_21,Manager_4))")
//create temp table
df1.createOrReplaceTempView("tmp_table")
sql("select col.* from tmp_table").show(10,false)
//+-------------+-------------+--------------+
//|Manager_11 |Manager_21 |Manager_4 |
//+-------------+-------------+--------------+
//| Employee_454| Employee_575| Employee_1545|
//|Employee_158 |Employee_2703|Employee_1312 |
//+-------------+-------------+--------------+
Upvotes: 1