Reputation: 11
The Code below gives about 95 % accuracy if I do not use dropout in training. The accuracy drops to 11 % if I use dropout.
The network is built using Numpy. I have used a class Neural Networks which contains many layer objects. The last layer has sigmoid activation and the rest have Relu. The code is:
import numpy as np
import idx2numpy as idx
import matplotlib.pyplot as plt
np.random.seed(0)
img = r"C:\Users\Aaditya\OneDrive\Documents\ML\train-image"
lbl = r'C:\Users\Aaditya\OneDrive\Documents\ML\train-labels-idx1-ubyte'
t_lbl = r'C:\Users\Aaditya\OneDrive\Documents\ML\t10k-labels.idx1-ubyte'
t_img = r'C:\Users\Aaditya\OneDrive\Documents\ML\t10k-images.idx3-ubyte'
image = idx.convert_from_file(img)
iput = np.reshape(image, (60000,784))/255
otput = np.eye(10)[idx.convert_from_file(lbl)]
test_image = idx.convert_from_file(t_img)
test_input = np.reshape(test_image, (10000,784))/255
test_output = idx.convert_from_file(t_lbl)
def sigmoid(x):
sigmoid = 1/(1+ np.exp(-x))
return sigmoid
def tanh(x):
return np.tanh(x)
def relu(x):
return np.where(x>0,x,0)
def reluprime(x):
return (x>0).astype(x.dtype)
def sigmoid_prime(x):
return sigmoid(x)*(1-sigmoid(x))
def tanh_prime(x):
return 1 - tanh(x)**2
class Layer_Dense:
def __init__(self,n_inputs,n_neurons,activation="sigmoid",keep_prob=1):
self.n_neurons=n_neurons
if activation == "sigmoid":
self.activation = sigmoid
self.a_prime = sigmoid_prime
elif activation == "tanh":
self.activation = tanh
self.a_prime = tanh_prime
else :
self.activation = relu
self.a_prime = reluprime
self.keep_prob = keep_prob
self.weights = np.random.randn(n_inputs ,n_neurons)*0.1
self.biases = np.random.randn(1,n_neurons)*0.1
def cal_output(self,input,train=False):
output = np.array(np.dot(input,self.weights) + self.biases,dtype="float128")
if train == True:
D = np.random.randn(1,self.n_neurons)
self.D = (D>self.keep_prob).astype(int)
output = output * self.D
return output
def forward(self,input):
return self.activation(self.cal_output(input))
def back_propagate(self,delta,ap,lr=1,keep_prob=1):
dz = delta
self.weights -= 0.001*lr*(np.dot(ap.T,dz)*self.D)
self.biases -= 0.001*lr*(np.sum(dz,axis=0,keepdims=True)*self.D)
return np.multiply(np.dot(dz,self.weights.T),(1-ap**2))
class Neural_Network:
def __init__(self,input,output):
self.input=input
self.output=output
self.layers = []
def Add_layer(self,n_neurons,activation="relu",keepprob=1):
if len(self.layers) != 0:
newL = Layer_Dense(self.layers[-1].n_neurons,n_neurons,activation,keep_prob=keepprob)
else:
newL = Layer_Dense(self.input.shape[1],n_neurons,activation,keep_prob=keepprob)
self.layers.append(newL)
def predict(self,input):
output = input
for layer in self.layers:
output = layer.forward(output)
return output
def cal_zs(self,input):
self.activations = []
self.activations.append(input)
output = input
for layer in self.layers:
z = layer.cal_output(output,train=True)
activation = layer.activation(z)
self.activations.append(activation)
output = activation
def train(self,input=None,output=None,lr=10):
if input is None:
input=self.input
output=self.output
if len(input)>1000:
indices = np.arange(input.shape[0])
np.random.shuffle(indices)
input = input[indices]
output = output[indices]
for _ in range(100):
self.lr = lr
for i in range(int(len(input)/100)):
self.lr *=0.99
self.train(input[i*100:i*100+100],output[i*100:i*100+100],self.lr)
return
self.cal_zs(input)
for i in range(1,len(self.layers)+1):
if i==1:
delta = self.activations[-1] - output
self.delta = self.layers[-1].back_propagate(delta,self.activations[-2],lr)
else:
self.delta = self.layers[-i].back_propagate(self.delta,self.activations[-i-1],lr)
def MSE(self):
predict = self.predict(self.input)
error = (predict - self.output)**2
mse = sum(sum(error))
print(mse)
def Logloss(self):
predict = self.predict(self.input)
error = np.multiply(self.output,np.log(predict)) + np.multiply(1-self.output,np.log(1-predict))
logloss = -1*sum(sum(error))
print(logloss)
def accuracy(self):
predict = self.predict(test_input)
prediction = np.argmax(predict,axis=1)
correct = np.mean(prediction == test_output)
print(correct*100)
# def train(self,input,output):
model = Neural_Network(iput,otput)
# model.Add_layer(4)
model.Add_layer(64)
model.Add_layer(16)
model.Add_layer(10,"sigmoid")
lrc= 6
for _ in range(10):
model.accuracy()
model.Logloss()
model.train(lr=lrc)
model.accuracy()
I have used MNIST database the link is THIS
Upvotes: 0
Views: 166
Reputation: 74
There could be various reasons for that. One was specified by @anuragal.
Basically dropout is used to reduce overfitting and to help the network correct errors. But when you use dropout before your final layer, it could be that the network is unable to correct itself, thus leading to a lower accuracy
Another reason could be that I see your network is small. Usually, shallow networks aren't benefitted by dropouts
Upvotes: 0
Reputation: 3114
One of the reason can be that you might be dropping too much neurons. In below code
D = np.random.randn(1,self.n_neurons)
self.D = (D>self.keep_prob).astype(int)
Matrix generated in first line might contain many values which are less then zero. Because of that when comparing it with self.keep_prob
(which has value 1) lot of neurons are getting dropped
Please try with one change
self.D = (D < self.keep_prob).astype(int)
Upvotes: 0