Reputation: 7400
I have a pandas dataframe as follows:
Name Age City Country percentage
a Jack 34 Sydney Australia 0.23
b Riti 30 Delhi India 0.45
c Vikas 31 Mumbai India 0.55
d Neelu 32 Bangalore India 0.73
e John 16 New York US 0.91
f Mike 17 las vegas US 0.78
I am planning to add one more column called bucket whose definition depends on the percentage column as follows:
less than 0.25 = 1
between 0.25 and 0.5 = 2
between 0.5 and 0.75 = 3
greater than 0.75 = 4
I tried the inbuilt conditions and choices properties of pandas follows:
conditions = [(df_obj['percentage'] < .25),
(df_obj['percentage'] >=.25 & df_obj['percentage'] < .5),
(df_obj['percentage'] >=.5 & df_obj['percentage'] < .75),
(df_obj['percentage'] >= .75)]
choices = [1,2,3,4]
df_obj['bucket'] = np.select(conditions, choices)
However, this gives me a random error as follows in the line where I create the conditions:
TypeError: Cannot perform 'rand_' with a dtyped [float64] array and scalar of type [bool]
Upvotes: 0
Views: 105
Reputation: 150735
A quick fix to your code is that you need more parentheses, for example:
((df_obj['percentage'] >=.25) & (df_obj['percentage'] < .5) )
^ ^ ^ ^
However, I think it's cleaner with pd.cut
:
pd.cut(df['percentage'], bins=[0,0.25, 0.5, 0.75, 1],
include_lowest=True, right=False,
labels=[1,2,3,4])
Or since your buckets are linear:
df['bucket'] = (df['percentage']//0.25).add(1).astype(int)
Output
Name Age City Country percentage bucket
a Jack 34 Sydney Australia 0.23 1
b Riti 30 Delhi India 0.45 2
c Vikas 31 Mumbai India 0.55 3
d Neelu 32 Bangalore India 0.73 3
e John 16 New York US 0.91 4
f Mike 17 las vegas US 0.78 4
Upvotes: 2
Reputation: 972
I think the easiest/most readable way to do this is to use the apply function:
def percentage_to_bucket(percentage):
if percentage < .25:
return 1
elif percentage >= .25 and percentage < .5:
return 2
elif percentage >= .5 and percentage < .75:
return 3
else:
return 4
df["bucket"] = df["percentage"].apply(percentage_to_bucket)
Pandas apply will take each value of a given column and apply the passed function to this value, returning a pandas series with the results, which you can then assign to your new column.
Upvotes: 2