Reputation: 113
I have the below dataset, with the variables as follows:
member_id
- an id number for each member
year
- the year in question
gender
- binary variable, 0 is male, 1 is female
party
- the party of the member
Leadership
- TRUE
if the member holds a leadership position in government or opposition, FALSE
if they don't
house_start
- the date the member became an MP
Year.Entered
- the year they became an MP
Years.in.parliament
- how many years it has been since they were first elected
Edu
- the amount of time the MP has participated in debates related to education in the given year.
member_id year gender party Leadership house_start Year.Entered Years.in.parliament Edu
1 386 1997 0 Conservative FALSE 03/05/1979 1979 18 7
2 37 1997 0 Labour FALSE 03/05/1979 1979 18 10
3 47 1997 0 Labour TRUE 09/06/1983 1983 14 157
4 408 1997 0 Conservative TRUE 03/05/1979 1979 18 48
5 15 1997 1 Liberal Democrat FALSE 09/06/1983 1983 14 3
6 15 1997 1 Liberal Democrat TRUE 09/06/1983 1983 14 9
As you can see with rows 5 and 6 in the dataset, the same member is recorded twice in the one year. This has happened throughout the dataset for some members because of the Leadership
variable. For example this member (id number 15) did not have a leadership position for the first part of 1997 but did get one later in the year. I want to be able to combine these two rows and have the Leadership
variable as TRUE
in these cases. I also need to compute the sum of Edu
rows for these as well, so for this member it would become 12 (because I want each members number of times participated per year for this policy area). So I want it to look like:
member_id year gender party Leadership house_start Year.Entered Years.in.parliament Edu
1 386 1997 0 Conservative FALSE 03/05/1979 1979 18 7
2 37 1997 0 Labour FALSE 03/05/1979 1979 18 10
3 47 1997 0 Labour TRUE 09/06/1983 1983 14 157
4 408 1997 0 Conservative TRUE 03/05/1979 1979 18 48
5 15 1997 1 Liberal Democrat TRUE 09/06/1983 1983 14 12
I have been trying to change these manually on Excel, but I need to do this for several different policy areas, so it is taking a lot of time. Any help would be much appreciated!
Upvotes: 1
Views: 67
Reputation: 5788
From my understanding the minimal repeating group is the member_id
& year
, we can then sum the Edu amount defensively (using na.rm = TRUE
) and then slice the grouped data.frame using boolean algebra (taking the maximum of a boolean vector yields true records).
library(dplyr)
df %>%
group_by(member_id, year) %>%
mutate(Edu = sum(Edu, na.rm = TRUE)) %>%
slice(which.max(Leadership)) %>%
ungroup()
Alternatively we can use top_n function (which yields the same result):
df %>%
group_by(member_id, year) %>%
mutate(Edu = sum(Edu, na.rm = TRUE)) %>%
top_n(1, Leadership) %>%
ungroup()
Upvotes: 0
Reputation: 388907
For each group you can select the rows where there is only one row or row where Leadership
is TRUE
.
library(dplyr)
df %>%
group_by(member_id, year, gender, party) %>%
mutate(Edu = sum(Edu)) %>%
filter(n() == 1 | Leadership)
Upvotes: 0
Reputation: 887048
We can do a group by sum
and arrange
and slice
the first row
library(dplyr)
df1 %>%
group_by(member_id, year, gender, party) %>%
mutate(Edu = sum(Edu)) %>%
arrange(party, desc(Leadership)) %>%
slice(1)
Upvotes: 3